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ABSTRACT
7]
A unified procedure is employed in the determination of the penetration resistance of
continuous strip {ootings and foundations buried up to ten times their width in compact sail.
The quasi-static analysis is based on the soil failure theory of classical soil mechanics.

The theoreticaj data is presented by means of a two part additive equation, two
dimensionless factors describing the effect of weight and cohesion. These factors are
functions not only of the angle of internal friction and the penetration ratio but also of the
shaft parameiers and the dimensionless group dependent on the density, the cohesion and the
breadth of the footing. The factors are calculated for the same figure of rupture and the
praciice of trecating a portion of weight within the failure boundary as a surcharge has been
eliminated. The inherent approximations and resultant errors in the computation are fully

stated.

Experimental verification is given both of the penetration resistance and of the
failure geometry by model testing in a glass sided soil tank. The penetration resistance data
in compact soil support the quantitative theoretical values. The measured failure patterns are
shown to be in agreement with the predicted shapes only when the effect of changing soil
properties and constraints are carefully evaluated throughout the duration of the 1est.
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OBJECT

This propramme of research is concerned with the development of theory of penctration
failure which may be used as the basis of a more complex theory of slip-sinkage.
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1. INTRODUCTION

The evaluation of the stress deformation characteristics of soil not only forms the
basis of foundation engineering but also represent one of the major problems hindering progress
in soil-vchicle relationships. In the past, this common interest in cne and the same problem
has not generated viable co-operation between the two fields. In fact, rather the reverse is

! true, partly due to the divergence in practical requirements.

Tor the design of foundations, complete soil failure at its ultimate bearing capacity
must be avoided with an adequate margin of safety, and the total and relative settlements must
be less than the limits tolerated by the superstructure. The point of complete failure is
determined by the maximum scress in soil, whereas the settlement is due to soil consolidation
under the weight of the structure, and depends on smaller siresses which can be described by
elastic analysis. Thus, bearing capacity theories are based on mathematical analyses for
ideal soils, and minor deviations from realistic conditions are adequately safeguarded by the
adoption of a factor of safety of three.

In mobility investigations, the theories of penetration resistance must be more precise
for application in the more complex theories of motion resistance, slip sinkage and the
ultimale immobilisation of the vehicle. Greater emphasis has been placed on empirical rela- :
tions and similarity techniques to overcome the problems of describing accurately the
influence of stress strain characteristics, compressibility and layered conditions in the
disturbed top soil. Although it is doubtful whether these factors will ever be predicted
accurately in a rigorous analysis, any empirical analysis must be firmly based on sc’'
mechanics theory. The solution must be capable of modification and extension to include the
influence of combined loading and vehicle attitude on the mode of failure and the load bearing
of the soil.

1.1 Analytical Techniques

The diverse approaches emploved to determine the stress deformation characteristics
of the soil may be divided into the following five calegories:-

(1) Static analysis, a rigorous mathematical analysis based on ‘he stress
conditions at failure in a rigid heavy Coulomb material.

(2)  Plasticity theory, the association of static analysis with suitable stress strain
relationships.

(3)  Soil mechanics theory, an approach based on 1 or 2 above, but involving
simplifying assumptions in order to obtain reasonably economical solutions to real
problems.

{(4) A semi-empirical analysis employing measured soil stress deformation
characteristics.

.(5)  Model experiments guided by dimensional analysis.
The main difficulty with the various types of rigorous analysis —for example static analysis,
plasticity theory ard limit analysis—is that they are not relevant to real soils. In order to

1




obtain immediate solutions to practical problems, soil mechanics theory has incorporated much
of this more fundamental work without fully defining all the asgumptions and approximations.
The result is that particular problems have numerous solutions which have little point of
contact with each other. Both rigorous and theoretical analysis are combined with empiricism
and dimensional theory to yield a wealth of possibilities. The potential and limitations of
these evaluation techniques are illustrated in this review of previous work.

1.2 Static Analysis

Perhaps the most relevant approach to soil mechanics is through the method of static
analysis, particularly associated with the work of Sokolovski!. It is based on the properties
of a rigid Coulomb material and combines the known relationships between the stresses at
failure with the partial differential equations of equilibrium.

The simplest way of describing stress conditions at failure is by the Coulomb
equation?,

T = ¢ + o tan @ veees 1.2.1.

where 7 represents the maximum shear stress along any piane of incipient failure, c the
cohesion, o the normal stress on the plane and # the angle of internal shearing resistance.
A more general version of this yield condition showing the relation between the normal and
shear stresses on any two mutually perpendicular planes at a point of incipient failure is:-

. ) ) '
oy * 9% sin § + [(ox + °y) + 'rx£| T «ccosf =0
2 4

eeeen 1.2.2,
The equations of static equilibrium are:-
& Ox + 8 Txy = 0 N
8x dy
5 + 80 ’ e 1.2.3
Txy oy = eeee 1.2.3,
ox oy 0)

The total distribution of stress throughout a mass of failing soil can be obtained by
integration of these equations starting from known boundary stresses. This can be done by a
step by step numerical method using more convenient versions of equations 1.2.2. and 1.2.3.
Sokolovski has published an account of the applications of this method to many rather simple
problems. Prager3 developed an alternative graphical technique called the Pole Trail method
which was used by Josselin de Jong? to obtain the bearing capacity of a surface footing on
a frictional material with weight and surcharge.

The most fundamental proposition that emerges from this analysis is that slip planes
occur in pairs inclined at an angle of 7/2 +{ to each other at all points in a mass of soil at
failure. This can be seen immediately from the Mohr diagram in Fig 1.2.1.




In genern), the slip line ficld will consist of two sets of curved lines intersecting at
the correct angle of 7/2 + . Where a discontinuity occurs in the boundary siress conditions
(as at the corner of a footing) two different slip line fields mcet cach other. In order to obtain
a continuous slip line field, a third fan shaped zone is introduced with one sct of slip lines
emanating from the point of discontinuity or singular point (I'ig 1.2.2.)

When a uniform loading is applied parallel or at right angles to the gravitional force,
the curved slip tlines are straightened to form stress fields in the well known acti ve and
passive Rankine stales, respectively, In addition, if a singular point occurs between two
straight slip line ficids, then all the lines emanating from thu point are straight radii, and the
other family are inclined at an angle # to the circum{erential direction to satisfy the condition
of equilibrium so that the slip lines are at an angle of » /2 + {. The increment of length of
the curved slip line is:-

rd € secf = drcosec@ v 12,40
and after integration

no= g e Swnd ce 125,
where 1y is the radius fer ¢ = O (Iig 1.2.3.). Thus the circular failure plane is replaced Ly

a logarithmic spiral when friction is present in the radial fan.

Static analysis can only be applied to probiems where the soil mass at a state of
failure 1s completely isolated by Loundaries of known stresscs and kaown failure surfaces
within the soil. Exampies are the surface foundation and retaining wall probiems illustrated
i Figs 1.2.4a. and 1.2 th. Note that, in these cases, all the soil within the boundaries

ABCDI and ABCDEGIH is definitely failed.

Unfortunately, the technigues cannot vicld a complete solution to the deep foundaticn
problea: shown in Fig 1.2.5. This is iecause a large part of the zone BilLG consists of soil
which is definiteiy not in a state of failvre. It is possible to obtain the zone ABC by static
analysis and to sec¢ that there must be a fan with initially straizht radii emanating from B, The
other limits of the fan BCD would narmally be obtained from the slip line ficld ir the region
BDEG by integration inwards from known boundary stresses along BG and GE. This cannot be
done beczuse the soil is not in a state of failure along these boundaries.

A rigorous solution to this problem would require a knowledge of the stress strain
relation fer the soil extending over the whole elastic plastic range. This would provide a
separate set of kinematic constraints from which extra equations could be established. Such a
systen: cf static and kinewmatic requircments constitutes a theory of plasticity.

1.3, Theories of P'lasticity

~ The qoymbinalign of static requirements based on force equilibrium and a failure
criterion, and xinematic requirements bascd on stress strain relations is the basic feature of
any plastic theory. The most successful solutions have been developed for incompress‘ble,
frictionless materials failing according to the Tresca criterion:-
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Normally (e.g. for metals) K is far greater than the gravitional stresses which may then be
neglected, resulting in the assumption of a weightless material, The way in which stress
strain relation can be described in a plastic material is highly complex. Let it suffice to say
that it is derived from the concept of a yield function which, for a stable material, requires
that the strain rate vector is always normal to the yield surface when axes of plastic strain
are superimposed on the axes of stress in Mohr's circle construction. The ratio of plastic
extension to plastic shear rate is uniquely determined by the shape of the yield surface.

This theory of plasticity has been used with limited success for certain simple
problems concerning the working of metals or of relatively strong clays. When more complex
boundary conditions are introduced. the complicated mathematical expressions for the
curvature of the slip lines are not always capable of yielding a general solution.

Even in a perfectly plastic weightless material with § = O, few problems have been
solved. Pra_nd;ls achieved an exact solution for the identation of a flat surface by a long flat
- punch (Fig 1.3.1a.). The regions ABC and BDE are regions of constant stress whilst BCD

"is a zone of radial shear. However, Hill(’,proposed an alternative stress distribution for the
same problem which gives the same bearing capacity (Fig 1.3.1b.). The velocity fields for
the two solutions were added by Shield 7. In Prandtl’s solution, the rupture distance BE is
twice that in Hili's solution, but the velocities are halved so that the volume of material
raised above the undisturbed surface after the punch has penetrated a small distance is the
same in both cases. It has been proposed that the double wedge is applicable to a smooth

base and the single wedge to a rough base when friction is present. This distinction is later
used in soil mechanics. ‘

Considering the penetration of the load into an ideally plastic material, the surface
bearing capacity is not the maximum base penetration resistance, and it increases with depth
to some steady value. At this ultimate bearing state, Jaky® has postulated the slip line’
field for the case of plain strain (Fig 1.3.2.). In the zone of radial shear BCD, the slip lines
turn through an angle of 7 radians instead of 7/2 radians in Prandtl’s solution. The two
regions of constant stress ABC and BDE remain intact, but the rupture surface CDE breaks
out at the vertical free surface as opposed to the horizontal free surface in the surface case.

In view of the difficulty of obtaining a precise solution, an approximate method known
as limit analysis has been developed within this theory of plasticity. The collapse or limit
design theorems were first introduced by Drucker and Prager ? and refer to the constant loads
if the accompanying changes in geometry are disregarded. In other words, the equilibrium
conditions may be set up in the undeformed body and represent a great simplification because
the deformation constitutes one of the unknowns in the collapse problem.

The two theorems are'-

(a) Collapse will not occur if any state of stress can be found which satisfies the
equations of equilibrium and stress boundary conditions.

(b) . Collapse must occur if, for any compatible flow pattern considered as plastic

only, the rate at which the external forces do work on the body equals or exceeds the
rate of internal dissipation.




Based on the first theorem, a perfectly plastic material will adjust itself to carry the
load if there is a possible way. This statically admissible state of stress gives a lower
bound solution for the equilibrium stress conditions at every point of a plastic zone. From the
second theorem, the soil will fail if a path of failure exists. This kinematically admissable
velocity field gives an upper bound solution which is only valid for perfectly elastic materials.
Thus a lower bound solution is maximised whilst an upper bound solution is minimised. The
actual solution lies at the point where these two approaches have the same value for the
applied force. The use of these theorems is tedious and-there is no guarantee that the upper
and lower bound solution will converge accurately on the same mean value.

Attempts have been made to develop a theory of plasticity for a material with weight
and internal friction, which would be appropriate to real soils. The Tresca yield criterion has
been replaced by the Von Mises - Coulomb criterion and the material assumed to be non-work
hardening. This activity is well represented by the recent work of Drucker!?,
Haythornthwaite!? and Shield!2 This attempt has failed, however; the resulting material has
the property of enormous dilation with shearing strain and is, therefore, quite unlike soil'3.
One negative outcome of the work is the realization that the limit analysis theorems need
extensive modification before they can be applied to frictional materials *4,

Frequent reference to the theory of plasticity is made in published work in soil
mechanics. Terzaghi’s work ** on bearing capacity is based on Prandtl’s solution and
Meyerhof’s'® on Jaky’s. In the particular case of strong frictionless clays, there is some
justification for this, due allowance being made for the controversial nature of the plasticity
solutions themselves. However, the minimisation procedure which are often used in soil
mechanics and justified by vague references to limit analysis do not appear to be correct.

1.4 Shallow Foundation Theory

Soil mechanics commenced as a serious theoretical study with the publication of
‘Theoretical Soil Mechanics’ by Terzaghi in 1943 !5, The basis for the theories, developed
therein, is clearly the theory of plasticity for frictionless weightless materials. Modifications
to suit heavy frictional soils have been attempted by numerous workers, each applying
different assumptions and simplifications. No major effort is made to explain why rigorous
solutions of real problems are not possible, nor to develop suitable principles for non-rigorous
methods. This unsatisfactory position in current soil mechanics can best be appreciated by
critical examination of the existing theories of bearing capacity.

The failure geometry assumed by Terzaghi for a surface foundation is shown in
Fig 1.4.1a. From the conditions of stress beneath the base of the footing, he postulated the
existence of a wedge shaped body of soil ABC, which remains permanently in a state of
elastic equilibrium and behaves as part of the sinking footing., Furthermore, the shape of the
wedge has dependent on the base roughness such that the base angle y could take any value
between 7/4 + f§ /2 for a perfectly smocth base and #§ for a rough base. The latter value was
adopted for two reasons, first because he found that the angle of base friction was always les:
~  than the angle of shearing resistance, and secondly because he assumed that the footing could
sink only if the soil immediately below the wedge tip C moved vertically downwards. For this
condition, the stress trajectories must emanate from a vertical tangent. This gives rise to an
impossible stress condition at point C, where four failure planes intersect in a Coulomb
material at angles of other than the correct values of 7/2 + ¢ and 7/2 - { radians.
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For a surface foundatien, the region B is uninfluenced by the structure, and is
dependent only on the weight of the soil below the horizonwl soil surfuce plus any uniform
surcharge Tuyer, These known stiess conditions yield a plane shear zone in the passive
Bankine siate. The maximus extent of this repman s deteisined by the outer boundary of the
fan shaped zene which emanates fram the tip of the wed e heneath the footing,

The caleniation of the resultant bearing pressure was derived from a two past caleula-
tion and presented in terms of an additive cuation:-

poToeNg ot a4 YBNS, v 1401
where N¢ | '.\q and Ny are dimensionless fuctors depending only ou #. The effect of weipht
was ablained for a purely frictional materizl and Gint of coliesion and surcharge for a weights
less maerial with friction, The former s reasonabile since i is the condition for div sand,
bt the second is completely snreatistic and was chosen only hecause it gready simplified
e congnitation of the bearing capacity,

Based onan extension of Prand:l's analysis®, Terzagit assumed that the pole of the
loparithmic spiral is at point A for the colcutation of the cohesion and surcharge factors, This
s entirely salislactory since it pgives the correct orientation of stress along foce AU, and
DT s tangential to the spiral CD'L For ealeulating the weight factor, Trrzaphi adopted o
semi-graphical treatment baseid on the work of Ohde 7 The pole of the spiral is restrained o
move anywhere along BIY or that line produced. The actual point is chosen such tht the
esultant bearing capacity is a minimume Unless viee pole of Gie spirad is ot tie Comer of the

footing, the stress divections are nearect where they intersct the wedee boundary B and

the failue surfaces CDV'ET ore dissimilar.

Ina weightless media, the fixed soit body and the passive lankine zone are separated
by a zone of radial shear, comprising radiv and logarithinie spirals whole pole lics at the
corner of the footing. Ohde proposed that these constraints were excessive for a heavy Coulomb
materinl when existence of a doubly curved slhip line field was known, For mathemation |
convenience, he retained the concopt of o zone of ridial shear, but relaxed the requisement tht
the region must radiate from the corner of the footing. By restraining the pole to the boundary
of the pussive Rankine zone, only one stress discontinuity oceurred. This discontinuity was
present along the retaining wall in his theory and was ignored because the obliguity of the slip
planes was influenced by the friction on the interface. Thus, both sources of crror were
collected at ene point and their effect minimized by the adoption of a minimum value postulate.
Since the minimising procedure was not carried out for ¢ series of failure sufaces which all
satisfy the conditions of equilibrium, the boundary conditions and the idealised soil properties,
there seems littte logical justification for using it. There 1s even less reason for its application
in the case of bearing capacity where the stress conditions along the soil to sojl boundary of
the fixed soil wedge huve already Leen positively acsumed. 105t is initialy assumed that the
fan shaped zone is enclosed by two straight boundaries (the sides of the wedge and the passive
Rankine zone) meeting at a singular point, then it follows implicitly that the intemmediate ship
line ficld comprises radii and logirithmic spirals with their pole at the singula proint i.e. an the
corner of the footing,

The weak link in this reasoning lies in the initial asswnption of the stress conditions
which exist Leneath the footing, A study of the effect of weight and surcharee on the ultimate
bearing capacity of a cohesionless material was first conducted by Lundgren and Mortensen 18
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This analysis was based on plasticity theory. The failure patterns which result from the three
combinations of weight and surcharge are shown in Fig 1.4.2. The upper diagram illustrates
the traditional Prandt] failure pattern for a weightless soil with surcharge. The inclusion of
soil weight in the analysis results in a curved wedge boundary and a doubly curved slip line
field in the fan. When both weight and surcharge are considered, the failure surface is unique
and it has been postulated that the ultimate bearing pressure in a cohesionless soil can be
expressed more correctly by the formula:-

P = r @Ngow + J%7YBN,,) o 1402,

where Ngw is the surcharge factor for a weightless soil, Nyo is the weight factor for zero
surcharge and 4 is a function of § and the surcharge to weight ratio. For § = 30° the
correcting factor i is given in Fig 1.4.3. As its maximum value is only 1.17, the error made
when neglecting 1 is thus not excessive,

It is also interesting to note that the value of u remains pesitive for quite large
surcharges. In Terzaghi's theory where shallow sinkage is considered in terms of a surcharge
soil layer, the maximum value of the correcting factor when § = 309 occurs for a penetration
ratio of 0.4 and the correcting factor is greater than zero provided the penctration ratio is less
than ten. This lends proof 1o Terzaghi's original argument that by neglecting the shear
strength of the overburden and discarding a correcting factor, the computation is simplified
and any error is located on the safe side. Unfortunately, Lundgren’s value of Nyo corresponds
to - solution which is statically correct but kinematically i. » s<ible and is now thought to be
over conservative.

An alternative solution was develeped by Gorbunov-Passadov!® who hased his
analysis on the assumption that the velocities in tlie plastic zones have the same direction
as the active slip surfaces. Although this assumption is open to criticism, he did provide
some experimental substantiation from a photographic analysis of the paricle paths at failure.
From his calculations, there results a two pant wedge (Fig 1.4.4.). The inner elastic zonc
ABC is almost the same shape as that found by Lundgren. From the outer houndary of the
compacted core ABD, the slip lines curve to make vertical contact with the boundary of the
inner elastic core. With this type of failure mechanism, the value of Ny is much larger than
those given by the classical method (Fig 2.10.1.). It is, however, a valuable attempt Lo 1164
a statically correci solution based on the kinematic evidence oblained fiom test data.

The two preceding theories '8+ 12 suffer from this disadvantage that cohesion is not
considered. A less vigorous but more general analysis has been proposed by [1u?® in his
‘Variable Factor-Theory’. The slip surface comprises a logarithmic spiral with its pole
constrained at the corner of the footing and a straight sided wedge under the foundation whose
variable base angle ¢ is determined by the condition for which the ultimate Learing capucity
is a minimum (Iig 1.4.5.). Hence, the minimum value postulate depending on the position of
the spiral pole is replaced by one depending on the base angle of the wedge using the same
moment equation as the basis of the analysis. It therefore suifers from the same criticism as
Terzaghi's small wedge, namely, that the failure planes at the wedge tip do not meet and the
correct angles in a Coulomb material. It will later be shown that the minimum value postulate
wholly depends on the mathematical constraints of the problem when dissociated from the
correct stress conditions and not on the mechanism of failure (c.f. Section 5).

.2l . , . .
Rowe’s solution™ combines the procedure of slices as describud by Bishop ** and
Janbu?? with the stress dilatancy relations. In the failure geometry, the slip line is replaced
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by the a -line where a is the average inclination of the major pl;ne at which the particles are
interlocked (I'ig 1.4.6.). The angle of rotation of the principle stresses when measured from
the vertical is denoted by &4 in the figure and when measured from the horizontal by 6. This
analysis has several advantages. The stress boundaries are nowhere violated, the anafysis can
be simplified by approximate methods without involving errors of practical importance, and the
solutions are identical with those based on the Mohr-Coulomb criterion when the dilatancy is
zero,

The solution seems 10 provide a suitable compromise or correlation between the two

«conflicting groups adopting the straight and curved wedge boundaries..

1.5 ‘Deep Foundation Theary

Terzaghi applied the term ‘deep foundation’ to one whose sinkage is greater than the
width. The first comprehensive study was conducted by Meyerhof 18, He extended Terzaghi's
bearing capacity theory to deal with deep foundations, and made a major contribution in that
the failure geometry was not only dependent on @ but also on the sinkage. A failure pattem
was proposed with a smooth transition from the surface case to that of a deep foundation
(iig 1.5.1.). The zone of mobilised soil is again divided into three regions - the wedge, the
plane shear zone and the zone of radial shear. As sinkage increases the segment if the spiral
is extended, and the plane shear zone is reduced in size,

Meyerhof assuined that the wedge angle must always have a base angle of 7/4 +
/2 regardless of the roughness of the footing, but in accordance with placticity theory, stated
that beneath a perfectly smooth base, two wedges were formed instead of one which cffecuvely
halves the total bearing capacity {(c.f. Figs 1.3.1a. and 1.3.1b.). In practice, however. a smooth
base is never found, and may be discounted.

For the determination of the failure geometry and the caleulation of the bearing capacity
factors, Meyerhof was obliged to assume a certain pressure distribution along BC, ED and DB
(Fig 1.5.1a.). Along the wedge boundary BC, he assumed that the weight-frictional component
of pressure would always have its centre of pressure two thirds of the way from B to C. From
the analogy of hydrostatic pressure, this would be correct for a surface foundation, but as the
sinkage increased, the centre of pressure would move towards the centre of BC.'

The resultant forces acting on the foundation shaft BG, and the weight of the adjacent
soil wedge BEG are repiaced by ‘equivalent stresses' nommal and tangential to the plane BE,
which may then be treated as an ‘equivalent free surface’. It is not stated however that these
stiresses are uniformly distributed along BE, nor is it made clear that the pressure due to both
cohesion and weight are equally di.. buted on all sides of the triangle BDE. The startling
assumption comes from using Mohr’s circle to detemine the equilibrium of the triangle BDE
upon which the geometry depends. The Mohr circle, however, is a construction that is correct
for the stresses at a point where uniform distribution of stress is a reasonable assumption.

The bearing pressure was represented by the equation:-

p 7 cN, 4 PoNg + MOBN, : e 1.5.1.

where po is the normal equivalent free surface stress along BE. The calculation of the
cohesion and surcharge factors is again based on an extension of Prandtl’s work in a weight-
less material, and the pole of the radial shear zone lies at the corner of the footing, For the
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" calculation of the weight factor, Meyerhof minimised with even greater abandonment than

Terzaghi and has attempted to justify this in published work?* on surface foundatizns. Even
further discontinuities are introduced by the complete relaxation of the restraints on the
spiral centre (Fig 1.5.1.). Unfortunately the unresirained pole necessitates discontinuous
slip planes along the L indaries of the wedge BC, and the passive Ranking zone, B3, It is
also u.acceptable on the grounds that the failure surface CDI has a sharp comer in it at
point D) which is unlikely where soil movement is occurring, Unless these discrepancies are
small, there remains little support for describing the shape of the curve by the equation of the
logarithmic spiral, apart from the advantage that of the frictional forces pass through the pole.
Compared with Terzaghi's N+ factor for the same wedge angle of #/4 + (/2 he did obtain
values of up to 10% lower at the larger values of @, but only by sacrificing the more accept-
able stress field. With the inclusion of the sinkage parameter, the freedom of movement of
the pole is much more considerable and impossible stress field can be derived. In the presence
of the surcharge, zone BEG is also neglected so that the geometry reduces to that of a footing
on a slope. Meyerhof also shows that there is little difference in the value of Ny if the plane
shear zone is replaced by an cxtension of the radial shear zone, but rotational equilibrium of
the forces was not examined in either case. It is hardly surprising, theretore, that the failure
geometry for the Ny calculation is much smaller than that for the weightless material; when
the plane shear zone is absent, the former may Le half the other.

In the generalisation procedure, Meyerhof confuses the concept of a surcharge with
that of a lorce due to soil weight and cohesion. He considers triangle BEG as a surcharge,
There seems no justification for this and it is perfectly possible to include the effect of this
triangle in the weight term. This leaves open the possibilily of considering any surcharge
applied to the surface EG.

In fact, Meyerhof did attempt to express the resuitant bearing capacity by the equation:-

p = CNcq + 557[3.\’yq ..... 1.5.2.

where one term represents the influence of cohesion and the other the influence of weighi.
The factors Neg (depending on N¢ and N) and N (depending on Ny and N,) are functions
of fl, the penetration ratic and the soil-structure propertics along the shaft. "liquation 1.3.2,
gives the base resistance of the foundation and any skin friction along the shaft must be
added to obtain the total bearing capacity. The cquation miay be used for only two special
cases. The composite factors both depend on N which in turn is governcd by the interaction
of cohesion and weight. For a general solution, it is only possible to determine Ngg amd
Nyq when one or other is zero or may be neglected; Ngg can be found for a purely cohesive
material when # = O, and Nyq fora purely frictional soil. No solution is possible for a
frictional soil with cohesion unless some arbitrary division of N is assumed. In other words,
the dependence of the bearing capacity factors on the cohesion to weight ratio is hidden in
the calculation,

Balla®® considered the same problem of a deep foundation but recognised that the
bearing factors depended on the cohesion to weight ratio in addition to @ and the penetration
ratio, The same sliding surface was used to calculate all the N factors and is shown in
Fig 1.5.2. llc observed that Terzaghi’s proposal for two curved failure surfaces to be
parallel and coincident with cach other at point C is impossible, and opens them out to the
correct angle. Unfortunately he retains Terzaghi's small wedge which still leave angle ABC

incorrect, and an intersection of four failure planes at point C which is not possible for a rigid
Coulomb Material.




According to Balla, the failure surface CDE is made up of a circle CD and a straight
line DE. It is not possible for a rigid body bounded by a circle and a straight line to move
without opening up large cavities along the boundary CDE. Neither is it possible for the
circular segment OCD to rotate pushing the triangle ODE upwards without cavities appearing
along the line Ob.

Another serions criticism is that the theory has been restricted to a maximum penetra-
tion ratio of 1.5, without any possibility of an extension Lo greater depths. This limitation
has arisen from the assumption that the plane boundary D must always make an angle of
71/4 « §/2 with the horizontal free surface. This is a valid statement in itself but it has two
repercussions: first, that the increasing effect with depth of the fdundation side thrust on the
base resistance cannot be evaluated and secondly, that it allows for no minor re-orientation
of the failuie surface. For example, an inflexion in the curved boundaryg or a slight angular
displacement of the plane shear zone boundary suggested by Meyerhol*® would satisfy this
condition without giving additional complexity to the basic theory. On Balla's rigid
interpretation of this condition, the rupture distance must increase rapidly with depth and
ultimately tend to infinity.

The analysis is based on Kotter's eguations of static equilibrium and the moment
referring to the centre of the ~ircular arc is also zero. Liven though a surcharge zone is not
delineated, it is noted that the final solution is presented in the usual form of a three part
additive equation, instead of combining all the forces due to weight in a single N factor

(Eqn1.4.1.).

The N factors according to this theory are markedly different from all previous values.
The Ny factor is much greater and therefore the breadih of the foundation has more influence
on the value of the bearing capacity (Fig 2.10.1). The increase due to depth, however, is rauch
less than in Meyerhof’s thcory, but the fatier is hardly a proper basis for comparison because
of the anomalies previously reviewed. Balla also stated that the theory is best applied to
granular soils or to those with little cohesion, so that N¢ is not of great significance.

1.6 Empiricat Factors in the Basic Equation

The theoretical analysis may be applied only to the idealised situation of a centrally
loaded continuous footing in an idealised material. For more practical problems in real soils,
many other effects must be considered by empirical changes to the basic equation.

The influence of soil compressibility and the state of drainage presents an added
complication to in-situ testing. In a compressible material, the practical application of any
theory calculated for soils at their minimum density will lead to sources of error. Terzaphi!s
overcame this problem by suggesting an empirical reduction in tan ff to two thirds of its
maximum value, whereas Meyerhof16 introduced a compressibility factor which varied from
tan @ for shallow footings to 0.85 tan @ for deep footings. Similar factors weie evolved for the
influence of ground water conditions but are not of relevance to the present study.

This practice was extended to evaluate other modifying influences such as shape and
depth of the foundation and inclination or eccentricity of the load. Denoting the shape factor
s, the depth factor by d, and the inclination factor by i, Brinch Hansen 28 generalised
Terzaghi's formula by multiplying each term with a set of factors:-

p = eNgs.dii. + gN iy t+ “YBN

cSclcle qsq q‘q .o1-6.1a

ySydyiy
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Using the known relationship between Terzaghi's N and Ny factors, the number of
parameters may be reduced by rearranging equation 1.6.1. in the form:-

p = (e + qtanP) Ngsdiie + JrBNys,dyi, s 1.6.2.

However, this method of overcoming the limitations of a basic theory, which itself
contains many simplifications, can yield some anomalous results. For example, d- must
always be equal to unity because N-. is calculated for ¢ = O in the basic equation, and the
inclinations of the load would tend to cause assymmetrical failure instead of the symmetrical
failure assumed in the original theory. Thus, both depth and inclination factors must bear no
relation to the original theory to be of practical significance.

On the other hand, it is realistic to adopt an empirical shape factor ta modify the
bearing capacity of a continuous strip footing Lo that of a rectangle on the basis of similarity
of the soil movement. The factor is then only accounting for the end effect; the technique
becomes increasingly suspecl however, as the strip upproaches a square or circle. Conversely,
the aspect ratio L/B is important in the selection of the length cf footing to represent 1wo
dimensional failure in model studies. Skempton?” investigated the influence of shape for the
special case of clay and proposed that:-

—

3
N¢ (rectangle) = {l + 0.2 ‘I:] Ne (strip)

Meyerhof!® presented his experimental data in the form of a graph and supgested that the
combined shape factor is a function of density, @ and the penetration ratio. Brinch Hansen?26
combined these results with Terzaghi’s and formulated fuither shape factors independent of
depth. For small aspect ratios, cohesion and surchurge become increasingly more important
than the weight of the material:-

[ 6 B3 .
N (rectangle) = Ll + (0.2 + tan G)I,J'\c (strip)
N (rectangle) = [1 -0.5(0.2 + tan"ﬁ)'%}\'-} {strip)

There is ample experimental evidence to corroborate these empirical relations for
shape and they are later used to determine the aspect ratio of tic foctings used in the current
tests.

1.7 Semi Empirical Analysis

The problems invelved in soil failure beneath vehicles are similar in nature to those
of civil engincering earthworks but are genecrally more complex. All the early attempls to solve
them have been based on describing the soil by measuring its response to certain simple load-
ing tests. Empirical curve fitting equations were used to describe the experimental results,
and these used as a basis of mathematical analysis of the more complicated vehicle situations.

The general pressure sinkage equation, which forms the basis of the current empirical
approach is attributed to I3ernstein?® and Letoshnev?? and is of the form:-

p = ki v 1701,
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where p is the pressure beneath the footing. The values of the sinkage modulus k and the
exponent n were obtained by plotting experimental pressure sinkage results on logarithmic
axes. The exponent was found to be fairly independent of the soil properties, but it was later
found that the sinkage modulus was a function of the size and shape of the footing.

In an attempt to improve Bemstein’s cquation to cover the complete soil range,
Bekker3® proposed that the relationship may be expressed by:-

. (E‘E + kg 20
C
where k. and k¢ are soil constants which may be determined from jests for two different plate

sizes. Although kis predominant in cohesive soils and kgin frictional soils, they are not
true soil constants and were still found to vary considerably with plate.size and shape.

A wore recent change to the pressure sinkage relationship has been suggested by
Reece3!. Influenced by Meverhof’s bearing capacity theory, he proposed the equation in the

form:-
= [ 4 1 —z " '
p (c k c 1 YiyB k g) {B} ..... 1.7.3.

which is dimensionally more attractive and introduces the various parameters in a more
acceptable way. The relationships between Meyerhof’s bearing capacity factors (equation
1.5.2.) and the constants in the equalion above are given by:-

C- g, {2zl )
Neg kc{Blf

< 5 1.7.4.
= k! ..7. n
7q g {B}

Equation 1.7.4. links the empirical approach with theoretical soil mechanics and it
should be possible to calculate the values of k'gf and k'c for compact soils. This is, in fact,
the way in which this project originated. Even for loose soils, an equation like 1.7.4. which
is based on some theoretical reasoning should be supcrior to others and a comprehensive
series of mcasurements made by Wills32 has endorsed this.

1

N

1.8 Dimensional Analysis

Dimensional Analysis has also been used to describe the phenomenon of penetration
failure by means of a dim.nsionally correct equation containing selected variables. Although
a number of variables in the problem may be reduced by dimensional reasoning, =« 'er the
complete solution nor the inner mechanism is revealed.

The most important variables in the problem of penetration failure may be summarised
by the following equation:- '

p = f (@ v.¢c,v,d 2) . 1.8.1.

where v denotes the velocity of penetration and d the characteristic dimension of the probe.
With the exception of velocity which may be neglected33, these parameters have been combined
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to form almost-every conceivable dimensional group and inverse function, some of which bear
little relation to the paralle! work in soil mechanics.

In a more realistic study of model analysis for earthmoving equipment Emori and
Schuring34 employed the following functional equation to describe soil deforming processes
in general:-

p/')’d2 = jl, c/vd, v 2/gd) vere- 1.8.2.

For the specific case of penetration failure in a composite soil with both cohesion and
friction, it was tentatively suggested that equation 1.8.2. could be written in the form:-

p/7132 - C/7B. fl(g) + fz(ﬁ) sreen 1.8.3.

where the characteristic dimension B denotes the breadth of the footing and 1y, and f, are
functions of #. As the comparison of various footing sizes is possible only when therc is
both geometric similarity and a consistent penetration ratio, it follows that the funciions f;
and f2 are also dependent on the aspect ratio, L/B, and the penetration ratio,

The final form of equation 1.8.3. is identical to the current civil engineering
approach, but it is no nearer the ultimate solutio.: the main contribution of the techniguz lies

in its ability to present the complexitics of the problem in an organised manner.

1.9 Experimental Measurements

The experimental verification of any failure theory in real soils is extremely difficult.
The measurement of the soil paranicters requires a high degree of accuracy and considerable
skill. The soil structure variables, and the variation of the soil paranieters with bulk density
must also be determined. Osman3® summarised the results obtained by translational,
compressive and torsional methods showing that identical values of cohesion and #f can be
measured independently by different metliods of testing.

In an attempt to verify the actual shape of the failure zone beneath a foundation, many
workers 19+ 36-3% have employed a photographic technique through a glass sided iank. No
reference in published literature has been found on the effect of soil interface fretion and
the validity of any photographic analysis is open to question. This problem may be overcome
by testing the model in the centre of a tank full of sand mixed with metallic particles. An
X-ray technique can then be adopted, but the complexity is a very real deterrent. Alternatively,
the sand may be replaced by cylindrical metal or wooden rollers of varving diameters3”. This,
howe ver, diverges from the physical reality of a natural soil. The over-simplified two
dimensional mechanism of failure exhibited by the roller model can not yield sufficient
corroborative evidence on its own merits alone but it does provide a simple tool for demonstra-
tion purposes during the development of the theory. For the additional tests, the most
convenient solution is to carefully investigate and minimise the effect of interface friction
prior to analysing the experimental data 49,

Both the force measurements and the failure geometry depend on plate size and shape.
The influence of aspect ratio in the study of two dimensional failure has already been
stressed. Not only is aspect ratio important, but also the breadth of the footing. Dimensional
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reasoning con no longer e applied, especially in compressible soils, when the plate breadth
is smalt in relation o particie size because lateral compression occurs rather than general
shear failure. 1t hus been suizgested that the minimum breadthy lies between 1 and 17 in and
will increase with compressibility 3. As this estimate of the minimum breadth was obtained
in a soil which was below the maximum bulk density, it is probably on the safe side,
Nevertheless, any results obtained for footings of less than 1 inch wide must remain suspect.

The available pressure penetration test data for high aspect ratie footings are
surprisingly  Huated compared with the vast fund of theeretical work. The major part of the
available experimental work has been carried cut in a dry sand which is & convenient walterial
to use, or in soils with little cohesion. In his paper, Balla?5 has summarised the experi-
mental data for the surface Learing capacity of foundations and preseated a comparison
between theoretical and test results in the form of a graph. Selig and McKee® conducted
siatic loading tests on small footings resting on the soil surface. Meverhof!€ also presented
detailed experimental verification of this theory for derp sinkage over the complete soil range.
More recently, test results have been published by Mubs®?, Lebeque®? and Biarez?7, the
latter including skin friction data. fowever, in many deep loading trials with strip founda-
tions, the effect of skin friction along the shaft is not considered separately. Althongh much
more research on skin resistance is available for piles, the cffect of the small aspect ratio is
unkncwn, Unless the exact nature of all the test conditions are fully described, it is not
always possibie to apply the resulis.

A similar situation exists in the field cf soil vehicle mechanics, and test data for
footings of reasonable size and shape in uniform constant soil conditions are not readily
availabic. Only one test in compact sand by Wills#2 may be compared with the present theory
for incompressible soils.

Finally, the prediction of the penetration resistance by means of a quasi-static
analysis depends on negligitle velocity eifect. In a study of this phenomenon, Vesic, Banks
and Woodward43 have demonstrated that the minimum bearing capacity of a surface footing in
both dry and saturated sand occurs at a penetration velocity of 0.25 in min and is approxi-
riately 30% less than that for static loading. Thereafter, the bearing capacity increases again
at a slower rate with speed. Haley and llegedus 33, found that the bearing capacity in saturated
sand at a penctration speed of 1750 in min was up to 30 higher than that at 2.6 in min. The
apparent drop in bearing capacity at low speed is attributed to an increase in compressibility
when particles have insufficient time to reorientate after each new load increment. As speed
increases the loading is too rapid for shear failure to occur along the paths of least resistance
and punching shear replaces general shear failure. At very high loading rates in saturated
sand, apparent cohesicn is also developed by the negative pore water pressures. Similar
velocity effects were obtuired by Geodman®# from small scale footing tests on clay. It may
be concluded, thercfore, that the effect of velocity is not insigaificant. However, in the
vehicle situation where high rates of loading occur, it is justiiiable to assume that the penetra~
tion resistance is equivalent to the static bearing capacity by neglecting the trough in the
curve of load versus speed.
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2. THEORY

Soil Mechanics cannot be a rigid discipline and cannot be treated as an exercise in
mathematics because the mathematical properties of soil are so complex. An adequate solu-
tion to any problem can be achieved oniy by a scientific comtination of theory and experiment.
It has been proposed that nothing less than the following constitutes an adequate Lasis for a
solutiou.

Fitst, the properties of the idealised soil for the theoretical analysis must be fuily
stated, This must be follovicd by a careful description of both the behaviour of such soil and
the simplifying assumptions which are necessary to overcome mathematical difficulties., These
suil properties and simpiifying assumptions must Le combined with the normal conditions of
equilibrium to determine the shape of the failure sudace within the soil. Ideally every part of
the soil involved in the failure should be in equilibtium. This way prove impossible, but the
departure from the correct equilibrium conditions must Le small and must be described
quantitatively. Furthermore, the correct stress conditions must exist at every point on the
boundaries. Once again, this may not be possible, but Jivergencies from the ideal must be
small, they must be shown to cause only small changes in the final answers and, ideally, they
should be shown to represent an approximation to a riore accurate but more complex failure
pattern. The failure pattermn so developed must be verificd by carefully controlled experiments
on a limited number of soils which cover a large part of the possible soil range. Once the
failure pattern has been established, the forces involved can be calculated and a suitable
computer programme developed. The results of these force calculations must be experimentally
verified over the same wide range of soil types. Finally, gencralising equations must be
developed to enable the communicaticn of the results of the computer programme in a simple
way. The errors involved in this generalisation must also be stated.

The whole of this process of interlocking theoretical and experimental me:hods ic
nccessary because any sitgle part is subject to such largze possibilities of error. It is difficult
#ven to measure the basic soil parameters as they exist in the problem under investigation,
far less to apply them in a theoretical analvsis, and it is difficult to repeat experiments
maintaining the same so.l conditions. The process described above would require such a total
corroboration of theory and experiment that it would ieave little room for doubt that not only
were the right answers achieved, but that they were ackieved {or the right reasons. -

2.1, The Basis of Soil Failur~ Theory

The soil is heavy, €nd it is assumed to be homogeneous, rizid and incompressible and
not to dilate when shearing. !t fails according to Coulomb’s equation from whicl it results
that lines of incipient failure occur in pairs making an angle of 7,2 + {§ t0 one another in a
plane strain problem. This is an idealisation in that =al soil is not quite incompressible or
rigid and does dilate slightly as it shears. It will be shown later than an initially homogeneous
soil can become completely non-uniform during loading.

When the soil siides along the surface of the leading structure, the stresses at the soil
structure interface are assumed to be described by a modification of Coulomb’s equation. In
this, the cohesion, c, is replaced by the adhesion, Ca, and the angle of internal shearing
resistance, , by the angle of soil-structure friction, & Under these conditions, the soil-
structure interface is not a failure plane, and if an interface exists, the correct orientation of
the slip planes must be detennined from Mohr's circle.




Tk above failure criterion together with known boundary stress conditions are
sufficient to make certaiu rather simple problems statically determinate, and a rigorous solu-
lion may be obtained by Static Analysis. Frequently, this technique can be employed in
special cases which form the basis of a more general theory, but when the stress boundary
conditions cannot be rigorously determined over the entire failure surface, the complete solu-
tion of many practical problems requires the adoption of {urther kinematic assumptions.

In most soil structure problems, the point of failure is represented by the loading at
which flow begins. There are certain characteristics of soil {low which are common to the flow
of any . her incompressible material. The motion will arrange itself so that the energy, lost
in the friction generated by the soil flow, is minimised. This requires that the paths of
individual particles are as straight as possible and only deviate from straight lines by making
the smallest angles of deflection on the largest radii. Soil will not flow along paths with sharp
corners except on a plane of symmetry.

‘The kinematics of soil flow in response to a small movement of the structure can be
simplified by defining only two possible types of flow. In the first, largec masses of soil move
as rigid bodi+ .. 1t is not possible for soil flow to result in the appearance of large cavities
within the soil; this is a common observation which depends on the low strength to weight
properties of soil. 1f the soil does not move as a rigid body, then it is convenicent to describe
the other type of movement as shearing (low. Zones of shearing flow will generally be bounded
Ly non-circular curves and when the soil exhibits high strength to weight propertics, these
boundaries need not he shamply defined. A given displacement carn be achieved with a minimum
energy input by rigid body motien. This is therefore the preferred mode of movement, but may
not be possitle due to the Loundary conditions of the problem.

The static analysis of rigid Coulomb materials leads to the concept of continuous «iip
line fields. In practice, these are only continuous in zones of shearing flow. The slip line
fields are non-existent over the main area in which rigid body motion taken place. The ahsence

of com lin linc fields and the occurrence of rigid body motion is made possible because
the s¢ itly compressible. Definite deformations along the slip surfaces are necessary
in ord: fop slip lines and soil failure.

The forces involved in the shearing of soil have two components, one due to the
cohesion and internal friction of the soil, and the other due to the weight and the internal
friction. In practice, these forces are generated together simultaneously along the same
failure plane whose path is dependent on the angle of internal shearing resistance. The
relative magnitude ol these two components can vary, and the solution should be correct when
either is zero. It seems logically justifiable, therefore, to divide the {orce on the structure
into two parts, one part due to the cohesive-frictional soil forces, and the other due to the
weight-frictional forces. This simplifies the analysis.

The equilibrium of the soil masses at failure depends on the distribution of the normai
and shearing stresses on the straight and circular failure surfaces of the rigid body zones.
(This does not include the zones of shearing flow). This distribution is difficult to obtain by
rigorous methods, it was originally proposed to assume that the stresses duc to choliesive-
frictional forces were disti'buted uniformly along the straight or circular failure surfaces and
further to assume that the siresses duc to the weight-frict un | forces were distributed in a
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hydrostatic manner, namely, that they were proportional o the depth, zo, {rom the nearest
part of the free soil surface vertically above the failure plane. These two assumptions are
described by the following relationship:

9Pc « TPc « kﬁc
I vees 20101,
Yy < TP L ng z, /]

Along both the failure surface boundaries of any singiec rigid body zone, the two co-
efficients kge and kg, were assumed to have constant values which satisfied the condition
that the values must be identical at the intersection of the two boundaries. The determination
of the two coefficients from the horizental and vertical equilibrium of the plane shear zone gave
the correct relationships for the active and passive Rankine zones. With the introduction of
sinkage, an unbalanced couple yielded a source of error.

In the following analysis the relationships are modified by considering rotational
equilibrium of the plane shear zone and include a dimenionless exponential term such that:

e « g < kﬂc °C<%> " W .
3

z\ 0 v 21,2
Ugy P Tgy < kay £<_0> ZO

B

where -1 < n < 3. This effectively permits a variable pressure distribution to be used along the
failure planes to obtain complete equilibrium. This does not affect the limiting case of the
passive Rankine zone or the condition that the values of the coeificients for the two planes
must be identical at the point of intersection. It should be noted that these relationships are
purely empirical. The basis for their selection is further discussed in Section 2.9. in relation
1o the overall theory of penetration failure, and the merits of the system may be assessed from
the analytical results.

The final solution to a soi! structure problem is most valuable if the results can be
extended over the full range of soil and structural parametcrs and presented in a readily usable
manner. This is particularly true in the case of soil-machine mechanics wiere a general picture
of performance over a wide range of soil types is required. There are three groups of variables
involved in a soil mechan. s problem—the soil and soil to structure properties, the structural
shape described by angle. and other ratios of its dimensions and, finally, the size of the
structure and the associated soil masses. The complete solution has to be such that an actual
problem can be solved by means of a set of graphs or tables and a slide rule.

By considering the cohesive, weight and surcharge terms separately, the complete
solution may be presented in the form of 1n additive equation. Reece*” has proposed that the
most complete form of this equation is:

Fb) = d%N, + d%»Ny, + d%N, + d’¢N,  ...21.3
where d represents the chamcteristic dimension of the structure. This equation may be used

to describe the force required to fail soil by any kind of structure whatsoever. The fourth term
takes into account the adhesion between the soil and the siructure. The N factors are {unctions
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not only of # but also of the soil structura friction and the shape of the structure. It should
also be n/ ‘ed that the surcharge term must not be confused with the weight of the scil
involved in the soil flow. It will generally refer to some loading on the soil which does not
contribute any shearing, for example the loading applied by a smooth surface foundation of
some adjacent building.

The additive nature of this equation follows from the addition of the various
components of the soil force, and the dimensionless parts are necessary in order to provide
dimensiondl homogeneiiy. The weakness of this equation is that the N factors are not
independent of the values of the dimensionless terms in the equation. The use of the
equation will, therefore, involve an error, which can be computed and must be presented ia
a complete analysis of the problem. Another possibility is to compute the N factors for
diffcrent proportions of the four sources of {orce on the structure and it is shown later that
this approach is applicable to the case of the penetration resistance for a deep footing.

In a recent analysis of the retaining wall problem*®, which includes surface bearing
capacity, the following scheme was adopted:

Ny calculated with ¢/yz = q/yz = cp/yz = O

N¢ calculated with c/yz =1,q/yz = co/yz = 0 7

1

Ny calculated with c/yz ca’yz =1, q/yz = O

Ng calculated with ¢/yz =1, ¢/yz = cp/yz = O

The Ny and Ny factors are, therefore, correct for a dry sand, whilst the N. factor is
computed for a soil with weight but no adhesion or surcharge. The N, factor is calculated for
a soil with weight and cohesion, which is reasonable since it is not possible to have
adhesion without cohesion, The actual value of ¢/yz, ca/yz and q/yz = 1 was chosen
for compntational simplicity and it was later shown that the errors would not exceed 5% over

the complete range of likely combinations of these properties.

Recent work has cast doubt on the necessity for the minimum value postulate in soil
mechanics although, initially, tremendous effort was expended in obtaining it for the computa-
tion of Terzaghi’s and Meyerhof’s bearing capacity lactors in this programme of research and
in the analysis of the retaining wall problem?8, These minimising methods would scem better
based upon the following simple common sense proposition:

If a family of failure surfaces can be found which everywhere satisfy the conditions
of equilibrium, the boundary conditions and the idealised soil properties, then the
soil will fail on that swface which requires the minimum force.

In fact, such a family of failure surfaces do not exist and, by establishing the only possible
failure surface which satisfies these conditions, the minimising procedures are not applicable.

For example, in the retaining wall problem, the comect failure surface may be
selected by considering the stress conditions at the interface. For a purely Irictional soil
with known interface friction, the correct stress conditions for an element of soil adjacent
the structure may be determined from Mohr's circle (Fig 2.1.1.). The orientation of the slip
plancs at the structure, angles & and &', may then be deduced. By this means, the correct
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position of the spiral pole which gives the correct stress conditions on the element at the
soil-structure interface and at the passive Rankine zone may be located. It is recognised that
the location of the pole by this technique does not eliminate stress discontinuities along the
full length of the interface, but by th» selection of an element at some point other than at the
tip of the wedge, the discontinuities can k- minimised. Alternatively, the correct stresses
along the full length of the interface may be obtained by interposing a zone of plane shear
between the interface and the zone of radial shear (Fig 2.1.2.). This is more applicable 1o
the case of a wedge shaped foundation. In Mintskovsky's analysis %, for example, this
modification does not result in serious deviations from the original criteria assumed for a
sliding surface,

A further problem arises with the addition of cohesion and adhesion because the
stresses become indeterminate unless a value for the normal stress is assumed (Fig 2.1.3.).
Variation of the normal stress in the range, 0.5yz to 3yz, makes little difference to the angle
between the soil structure interface and the slip plane, For this reason, an arbitrary value of
yz was applied to Mohr’s circle in the investigation. The positions of the spiral centre
derived from the analysis were compared with those obtained for the minimising procedure in
refercnce 48. The correlation was very good indicating that the minimum value postulate
degenerates into a very complicated method of determining the correct stress conditions,

Adopting this technique in the determination of the failure geometry for the surface
bearing capacity of a continuous flat footing, the comect stress conditions are satisfied only
by locating the pole of the spiral at the comer of the footing, Furthermore, it will be shown
in a more detailed investigation of the unrestruined pole (Scction 3) that the nature of the bear
ing capacity calculation ts such that it cannot tolerate unrestraint and always tends to adopt
a pole close to the comer of the footing regardless of the complexity of the minimising
procedures.

2.2 FFailure Geometry

The soil displaced by @ moving structure will always endcavour to minimise the energy
lost in flow, It is quite prepared to modify the shape of the structure to make it more stream-
lined, by arranging a fixed soil body between the structure and the flowing soil. A fixed soil
body will form, if the energy losses arc reduced by a less angular JJow path, by 2 larger radius
of turn or where shearing flow can be replaced by rigid body motion. Its actual shape and size
will be determined by the fact that it is made of soil and must satisfy the requirements of the
ideal soil propeities, the soil structure properties and the conditions of equilibrium. The
existence of such a body covering the structure surface will greatly simplify the problem if
for no other reason that it eliminates two of the variable (i.e. 3 = @ and ca = ¢). The
determination of the existence and shape of such a body is ihcrefore the starting point for the
solution of any problem.

When a continuous footing is forced vertically into a uniform soil under ideal condi-
tions, the flow of the displaced soil must be syminetrical about the vertical axis through the
centre of the footing in order to ininimise the lateral soil disturbance. As two sharp directional
changes in flow are imparted to the soil beneath the structure when it is forced to pernetrate, a
body of soil attached to the base of the footing could modify the structure shape and reduce

the enrgy losses by providing a less angular flow path if the conditions of equilibaum are
fulfitled (IFig 2.2.1.).

o I N
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The shear stress at any point on the base of a perfectly smooth {ooting is zero, and
the maximum stress must be normal to the base for the footing to penctrate into the soil.
Thus, the base of the footing is a major principal plane with lines of incipient failure
inclined at angle of 7/4 + /2 ta the horizontal. As there arc no shear stresses on a vertical
plane through the axis of the footihg due to symmetry, the slip lires ar# also inclined at angles
of /4 + $#/2 at this point. Assuming that the body of trapped soil is bounded by straight
failure planes, a wedge with sides inclined at angles of 7/4 + $#/2 to the horizontal is
formed beneath the footing (I'ig 2.2.11.). Due to lateral constraint of the soil forces, it
remains permanently in a state of elastic equilibrium and is unaltered by sinkage. There is
no reason to suppose that curved flow lines, requiring at least one point of inilexion to join
the points of known stress, could replace the straight lines. This would not only yield more
abrupt changes in flow but also impart a rather peculiar slip line field to the adjoining soil
mass (Fig. 2.1.1c.). On the same grounds, two wedges, moving laterally, are also inferor
because the flow path must then revert to one with sharply angular changes in direction

(Fig 2.2.1d.).

If the base of the footing is rough, shear stresses of unknown magnitude and distribu-
tion could be mobilised. llowever, if the wedge is generated and is in equilibrium beneath
a perfectly smooth footing without the development of any shear stresses, 1t is not conceiv-
able that base roughness would in any way influence the shape of the fixed soil body. There
is no need for shear stresses to be developed along the base, and there is no way of mobilis-
ing them with symmetrical loading under ideal conditions. The base of the structure is no
longer important and is replaced by the two soil boundaries of the wedge both of which are
failure planes. The directions of the other families of slip lines are known from the conditions
of stress at the wedge tip and must emanate at angles of 7/2 + § to the wedge boundaries.
As the geometry is symmetrical about the central axis of the footing, the failure surface on
only one side is subsequently considered,

The particular case when sinkage in zero and the footing smooth is capable of
rigorous solution by the method of Static Analysis, and this can be used as the starting point
in the development of the failure pattern. Fig 1.2.4a. shows Sokolovski’s! solution for a
foundation obliged to fail on one side only. The zone BDE is always straight sided (Rankine)
as long as the surcharge is vertical, The zone ABC is doubly curved Lut as long as A is
smooth, angles CAB and ABC must always be 7/4 + (/2. Angle ACB is 7/2 - @ under any
circunstances. Although the case of symmetrical failure was not considered, it is not
difficult to see that symmetry requires that C shall lie below the mid point of Al3, and the
angular requirements, mentioned above, force ABC to become straight sided. The curved fan
BCD then becomes a radial shear zone bounded by a logarithmic spiral and the total failure
pattern is shown in [ig 2.2.2. This conclusion is confirmed by Josselin de Jong® The
wedge is the same shape as had been deduced already.

For the more general case of shallow and deep foundations, there must be a logical
transition from the failure geometry of the limiting surface case. There are two possible
modifications which can be made to the failure geometry to account for sinkage. ["irst the
shape and extent of the radial shear zone may remain unaltered, and the boundary DE of the
plane shear zone may be produced to meet the surface at the correct angle of 7/4 - §/2
(Fig 2.2.3.). This configuration is obviously possible at very small sinkages and has much
to commend it, For instance, the correct stresses are atiained along the free surface and
along the smooth foundation shaft, and the boundary conditions are nowhere violated.
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It does not apply to a footing because there is no shaft support to cause the passive
pressure. It does not even apply to a foundation because it has been shown by experiment
that pressing the footing down does not cause the soil to exert full passive pressure against
the walls. Also, the rupture distance, GE, does not increase linearly with depth, and conse-
quently this type of failure may be rejected. Alternatively, the zone of shearing flow may Le
extended in conjunction with a change in the shape of the plane shear zone (Fig 2.2.4a.). The
rupture plane, BD, is the last radial slip line of the radial shear zone BCD. The plane shear
zone BDEG is delineated on two sides by a pair of failure surfaces, BD snd DE, making an
angle of 7/2 + @ with each other. The boundary. DE, no longer satisfies the stress conditions
at the surface but this requirement can be fulfilled without adding complexity to the failure
geonetry, by &« minor re-orientation of the slip plane, DE ",

The failure surface, CDE, in Fig 2.2.4a.’is bounded by a logarithmic spiral and a
straight line. In a dilating material, it would probably be bounded by curves such as are shown
by dotted line CDE. The choice of the dimensions of BCDEG by means of the Coulomb
criterion and static equilibrium ensures that the surface is little different from the real one;
the approximation being used to simplify the mathematics involved.

The failure geometry can be extended logically to deep foundations by further extension
of the radial shear zone. The limiting case depends on the nature of the support and the inter
face properties along the foundation shaft and on the soil properties. In very strong cohesive
soils, where the influence of soil weight may be neglected and the foundation shaft is
unsupported, it is assumed that the failure pattern proposed by Jaky® occurs (Fig 1.3.2.). Ior
any other cohesive-frictional soil where weight is important, this type of failure is largely
discounted. It is morc likely that the mode of failun: reaches the limit shown in Fig 2.2.4b.,
then changes to thai described by Vesic®™ at deep sinkage when the mass of soil affected by
the penctration of the footing becomes sufficiently great to ‘absorb’ the displaced soil by soil
compaction (Fig 2.2.5.). Vesic has suggrsted the possible upper limit for seneral shear
failure in sand occurs when the skin resistance distribution changes from hydrostatic to
uniform. The critical penetration ratio is dependent on density and #. The imnportance of this
change in the mode of failure only becomes significan: in the present study of incompressible
soils when @ is small. It is important to note, however, that the effect of soil compressibility
on the mode of failure even in the highly frictional materials tested is to reduce the penetration
ratio at which this changeover occurs. -

As the pressure exerted on the foundation shaft constitutes one of the unknown para-
meters, the problem is simplified by assuming that the vertical wall BG is self-supporting and
represents a free surface. From practical observations, this is quite justifiable over most of
the soil range to depths in excess of those investigated. It is also particularly relevant to
vehicle running gear. One major exception, however, it a dry [rictional material. It is proposed
therefore, to develop a theory of penetration failure on the following basis:

a. Dry frictional material—to include the effect of the shaft support or of material
falling into the shaft, forming a soil to soil beundary at the central axis of the fooling.

b.  Cohesive-frictiodal material—to assume the shaft is unsupported, but 1o make
provision for further extension to a supported shaft.
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The maximum height of the unsupported shaft for a cohesive-frictional soil may be
evaluated, approximately, by considering the stability of a vertical bank. It can be shown that
the critical height, i, is given by the equation:

Ho = 4(c/M tan (45 + 9/2) veen 22,1

and by substituting values for the soil density and 9 of 0.06 1b in'3 and 40°respectively, a
42 in high bank is stabilised when the cohesion is 0.03 1b in-2. This height of bank is
equivalent to a penetration ratio of 3 for a 14 in wide vehicle track and represents the
upper limit of sinkage; for different values of the parameters the value of li; is given in
Fig 2.2.6. o

The zone BDEG will tend to behave as a solid body (Fig 2.2.4a.). Of the two failure
boundaries, one must form the last radial slip line of the radial shear zone and therefore must
emanate from the comer of the footing; the other must make an angle of n/2 + @ to it and be
a tangent to the curved slip line, thus forming the continuous outer boundary of the failure
surface. These two plane failure surfaces need not be of the same length. From the conditions
of equilibrium there is an infinite number of possible configurations for the zone which are a
function of the sinkape and the soil parameters. Only one geometrical shape fulfills the
condition that the junction of the two failure surfaces must lie on the spiral surface which
then determines the failure geom.try for the particular parameters which have been selected.
As the determination of the failure geometry depends on the equations of equilibrium, it is
fully covered in the next sub-section.

Summarising the important aspects of the failure geometry, it is truly symmetrical about
the central axis of the footing and consists of only one figure of rupture for a soil with both
weight and cohesion. It comprises three different zone types:

a. The fixed soil body is a single wedge with base angle of 7/4 + @/ regardless
of base roughness.

b.  The zone of shearing flow is formed of a family of radii and logarithmic spirals
whose pole lies at the corner of the footing.

c. The plane shear zone is bounded by one free surface, the vertical wall of the
shaft, and two failure surfaces. These surfaces make an angle of 7/2 + @ with eacl
other and one determines the extent of the zone of shearing flow. The shape and
extent of the plane shear zone is obtained from the conditions of equilibrium.

The outer boundary is a smooth curve to satisfy the flow criterion. The size of the failure
geometry is dztermined by #, the penetration ratio, the cohesion to weight ratio and the shaft
parameters.

2.3. The Calculation of Penetration Resistance

The calculation of the penetration resistance of a continuous footing may be considered
in three parts. First, the figure of rupture is obtained by considering the equilibrium of the
straight sided zone. The magnitude and dire _tion of the soil forces due to the weight of the
soil mass within the failure zone, and those acting on the boundaries are determined. Finally,
knowing the directions of the resultant forces, the penetration resistance is evaluated. The
general procedure, assumptions and approximations are discussed in the following sections and
the complete theoretical analysis is given in the appendix.
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It is assumed that, for static equilibrium in a cohesionless soil, the weight, W], of the
plane shear zone BDEG is balanced by two weight-frictional boundary forces F.,; and I,
on any pair of failure planes, ED and DB respectively and by a shaft force Fys, on BG
(Fig 2.3.1.). The weight acts vertically downwards the boundary forces act at # to the normal
of the plane and the shaft force acts at an angle 3 to the normal. The two boundary forces are
governed by the same boundary coefficient of earth pressure, kg, modified in accordance with
equation 2.1.1. and the normal stresses are distributed in a way which diverges slightly [rom
the hydrdstatic manner. The shaft force is governed by the coefficient of earth pressure ky g
which is assumed to have a known value and by a hydrostatic stress distribution. Considering
any line, BD, sloping at ar angle, {, to the horizontal, the three equations for horizontal,
vertical and rotational equilibrium are respectively:

Fy; cos L - Fyy sin @-r) = Fygeosd .. 2.3.1.
Fyg cos (B -0)-Fy sinl =W + Fygsind .. 2.3.2.
“’ldl - F')’l d3 - F')’2d4 + F):de = O ..... 2.3.3. 3

In simple terms, there are three unknowns, the boundary coefficient, the boundary '
exponent and the slope angle. These are functions of the angles of internal and interface
friction, the shaft coeificient of earth pressure and the penetration ratio. However, the
relationships are exiremely complex because of the exponential terms, and the equations can
be solved only be substitution. The equations are written in general terms so that the slope
angle can take any value in the range - (45 - #,2) < 7 < 90 when the sinkage is greater th
than zero. In other words, the extent of the logarithmic spiral zone may vary from the surface
condition up to the full extent vhere it breaks into the foundation shaft. Normally, however,
the calculations arc terminated when the value of the slope angle reaches ff, so that the
failure geometry for the limiting case is that shown in IFig 2.2.4b.

When cohesion is added, six further forces must be considered in the equations of
equilibrium. First, there are the cohesive forces, C; and C;, acting along the boundaries
DE and BD, respectively, and the adhesive force along the shaft, Cg. The magnitude of
these forces depend on the length of the relative surfaces and the soil or interface. properties.
The cohesive-frictional boundary forces, F.y and F;, act at § to the rormal of the plancs

acts at angle & to the normal.

DE and BD, and the cohesive-frictional shaft f ace, Fegs

The two cohesive-frictional boundary forces are governed by the same boundary co-
efficient of earth pressure kg (modified in accordance with equation 2.1.2.) and the forces are
distributed in a way which diverges slightly from a uniform manncr. The cohesive-frictional
shaft force is governed by the shaft coefficient of earth pressure, kcgof known value and the
force is uniformly distributed. Including these forces in the equations of horizontal, vertical
and rotational equilibrium, the complete relationships are:

Eypcosg - Fyp sin®@ - o)+ Fy sin(@ - p) =

Fyg cosd + Feg cosé + Cacos¢-Cysin®-0) ., 2.3.4.
Fyzcos B - o) - Fyi sing + Fea cos (B - o) - "y siny = -
Wi + Fys sind + Fegsind + Cg + Cycos(@ - ) - Casiny veere 2.3.5.
Wydy = Fypdy - Fyadg + Fods ¢ Cydy - Foydg - Kpdg + Fegdyg = 0 ..., 2.3.6.
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For this general case, there are four unknowns —the weight-frictional and cohesive-
frictional boundary coefficients of earth pressure, the boundary exponent and the slope angle,
These depend on three further input parameters, the cohesive-frictional shaft coefficient of
earth pressure, the cohesion to weight ratio and the adhesion to weight ratio, in addition to
those already listed for a cohesionless material. The parametric complexity may be greatly
simplified by considering an unsupported foundation. It avoids the problem of assessing
independent coefficients of earth pressure for the weight-frictional and cohesive-frictianal
shaft forces and it allows the iateraction between the remaining variable to be presenied more
simply in graphical form.

Y,

One difficulty remains, In order to determine the four unknowns, a fourth equation must
be developed to relate the two boundary coefficients. Alternatively, three of the unknowns may
be obtained in terms of the slope angle and the {inal solution minimised with respect to .
The latter course was rejected because of the excessive amount of computation which would
be required. The following relationship is adopted to relate the two boundary coefficients:

- %

kge = (kgy)
This relationship is correct for the surface case and has, therefore, some theoretical basis.
When the penetration ratio is greater than zero, the relationship becomes more of an empirical
weighting factor because the two coefficients are dependent on the cohesion lo weight ratio.
It is shown in the appendix that kge = 1 for a cohesive soil without weight. Hence, the
greatest source of error in the value of weight-frictional boundary coefficient occurs in strong
cohesive soils where its influence is minimal. Similarly, the greatest source of error in the
value of the cohesive-frictional boundary coefficient occurs when the cohesion is small, so
that this basis of the analysis does not represent an excessive approximation.

The value of the slope angle, determined from the solution of equation 2.3.4. to
2.3.7. inclusive, fixes the shape of the failure geometry. The soil weight and the soil
boundary forces may be dztermined as shown in the appendix. The weight-frictional,
cohesive-frictional and cohesive forces on the plane BD are ignored in the calculatior of
the resultant forces because they are internal soil forces. Thus the resultant weight-
frictional force acting at § to the normal of the wedge boundary, BC, is dependent on the
weight of the soil within the failure zone, BCDEG, and on the weight-frictional forces act-
ing on the boundary, CDE. Similarly the resultant cohesive-frictional force acting at @ to the
normal cf the wedge boundary, BC, is dependent on the cohesive-frictional forces and the
cohesive forces acting along the side of the wedge, BC. The distribution of the resultant
forces is in accordance with equation 2.1.1.

The weighi-frictional and cohesive-frictional forces along the spiral boundary CD, are
difficult to determine. As these forces pass through the pole of the spiral they may be

eliminated from the calculation by taking moments about that point. The resultant forces are
given by the expressions:

Fy = (Wed + Wdy - Fyl.d3)/d6 ..... 2.3.8.

Fe (Crdr - Fedg + M), L 2.3.9.
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Where the foundation shaft is supported additional terms must be added to the
numerators of equations 2.3.8. and 2.3.9. (c.f. Appendix A).

Resolving, vertically, forces F,,, F, and the ‘adhesion’ force, Cj (all of which act
on the two boundaries of the wedge, AB and BC) and considering the weight of the wedge,
ABC, the resultant penetration resistance of the foundation is obtained:

F lbint? = 2F7 cos (y - f) - 1¥YB? tan Y + 2F. cos (¢ - g) + 2Cysiny
. e, 2.3.10.

This expression can be written in the form of a two part additive equation:

plbin? = %y BN, + cNe e 2.3.11
where:
Ny = 2F,cos(y- 9/ - tany R 2.3.12.
_ N
Ne = ZEC cos (y - @) + Cj sin \,‘»J;(CB) ..... 2.3.13.

The dimensionless factors, 5\’), and N, are dependent on @, the penetration and
cohesion to weight ratios. The implication of the two ratics is derived from the equilibrium
of the plane shear zone, and for a buried footing there is no surcharge term. Any real
surcharge on the soil surface can be considered separately.

When the foundation shaft is supported, equation 2.3.11. represents the base
penetration resistance and the dimensionless factors are further dependent on the shaft
parameters. The total penetration resistance is the summation of the base penetration
resistance and the surface traction en the {oundation shaft.

2.4.  Computer Programme

The computer programme is divided into three sections, namely for a cohesionless
soil, a cohesive soil without weight and a cohesive soil with weight. Additional procedures
are required for certain individual cases such as when either @, or the sinkage or the slope
angle is zero. The complete block diagram is shown in Fig 2.4.1.

The soil parameters (8,7, c), the soil structure parameters (8, ¢4, ko5, keg) and
the structure parameters (B, z) are stated on the input data and are thereafter available
throughout the programme.

The failure geometry is determined first. The three transcendental equations of
equilibrium, which are functions of the boundary coefficient, the boundary exponent and the
slope angle are solved by substitution. The range of the slope auple «(45-§/2) < ¢ < Jis
divided into an arbitrary number of 20 steps. For each value of the slope angle the value of
the boundary coeflicient, the boundary exponent and the difference or error between the
L.H.S. and R.ILS. of the equation of rotational equilibrium are determined. When two values
of the slope angle have beer selected such that the error is zero within the interval, the
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correct solution for the slope angle is obtained by an iteratiye process. The range is
bisected and, after each cycle, the section not containing the sol6ution is discarded until the
final answer is achieved with a prescribed accuracy of 0.5 x 10 ™ after about twenty iterations

In the case of a cohesive soil with weight the same procedure is used to determine the
value of the boundary exponent by substitution for each value of the slope angle. This
additional complexity is not required far the limiting values of the cohesion to weight mtio,

Once the failure geometry has been determined, the final calculation of the soil forces
and the penetration resistance is straightforward. No minimising techniques are included in
the final form of the programme. However, provision was made in earlier work for investigating
the effect of unrestrained spiral pole and of a variable wedge angle on the penetration
resistance using simplex®? (c.f. Section 5.).

2.5.  Computed Results {or a Dry Friction Material with Weight

The dimensionless NZ factors for three values of the shaft coeflicient of earth
pressure are shown in Figs 2.5.1. - 2.5.3. The Ny factor for each value of the shaft co-
efficient is completely represented by two families of curves, one for the perfectly smooth
shaft interface (8 =) and the other for a perfectly rough shaft interface (8 =0). The data in
Fig 2.5.1. is included because the value of unity is commonly selected for the shaft co-
efficient to provide a rapid solution to practical problems. The additional data in I'igs 2.5.2.
and 2.5.3. provide the necessary interpolation material for intermediate values of the shaft
coefficient,

The presence of interface friction is shown to increase the base penetration resistance
of the foundation in proportion to the downward thrust acting on the radial boundary of the zone
of shearing flow. The magnitude of this effect is also dependent on the shaft coefficient which
may take any value between the coefficient of active earth pressure, ka; and the coefficient of
passive earth pressure kp. In practice, however, it is statically impossible to obtain a solu-
tion for a perfectly rough interface using the maximum value of the shaft coeflicicnt because
soil failure wouid occur by lateral compression instead of kv vertical compression. llence, the
shaft coefficient was -estricted in value to two-thirds of that for the coefficient of passive
earth pressure. Increasing the value of the shaft coefficient up to this limit increases the base
peneiration resistance. Feor the smooth shaft interface, however, increasing the value of the
shaft coeflicient results in a decrease in the base penetration resistance. This aceirs because
the hor zontal shaft force generates a less than hydrostatic stress distribution on the
boundaries of the plane shear zone and effectively increases :he anti-clockwise moment of the
boundary force, Fyy . This cendition would not normally be achieved because it is unlikely
that the interface friction would be zero except when the shaft coefficient was at its minimum
value.

The rupture distance for the three values of the shaft coefficient are shown un
Figs 2.5.4. to 2.5.6. As the rupture distance is proportional to the breadth of the footing,
the dimensionless ration is {f/B where f is the horizontal distance between the edge of tie
foundation shaft and the point at which the failure plane breaks out at the soil surface. | he
effect of increasing either the angle of interface friction or the shaft coeificient is to increase
the rpture dis.ance because it depresses the slope angle of the radial boundary. When the
shaft is smooth, the failure geometry tends towards the statically correct stress field for
the limiting condition in which full passive earth pressure is developed on the shaft.
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2.6. Computed Results for a Frictional-Cohesive Material without Weight

The values of N¢ for a weightless soil are shown in Fig 2.5.7. In the absence of
weight, the shear bulb can be formed around the base of the foundation, Thus, the bearing
capacity reaches a constant value which is independent of any further sinkage. This explains
why the curves for N¢ have a rather unusual form.

The rupture distances {all to zero whon the shear bulb is fullv {formed (IFig 2.5.8.).
Thereafter, the rupture distance f is taken as the vertical distance between the base of the
footing and the point at which the boundary of the shear bulb breaks into the vertical shaft of
the foundation,

2.7.  Computed Results for a Frictioual-Cohesive Material with Weight

The Ny factors, N¢ factors and rupture distances for the intermediate ¢/ 7B ratios
are prescnted for three different shaft conditions. The relevant date for the unsupported shaft

are shown in Figs 2.7.1. 1o 2.7.3,; thnse for a perfecty rough shaft (¢ = ¢, = 0) are
presented in Figs 2.7.4. to 2.7.5. and those for a perfectly rough shaft (¢ = @, ca = ¢) are
given in Figs 2.7.7. t0 2.7.9. The calculation of the dimensicnless groups for the foundation '

with smooth ana rough shafts wer Yased on an arbitrarily chosen value of the shaft coefficients
ks and keg of unity.

The Ny factors follow the expected pattern. For the smooth shaft, the curves for
c¢/YB = 0.1 are very similar to those for ¢.”7B = 0, with the curves for the unsupported
shaft and the rough shaft lower and higher, respectively. The gencral effect of increasing the
c/7B ratio is to inciease the value of the N., factor until such time as equilibrium can no
longer be achieved, and the curves tend very rapidly to zero.

The Ne factors show comparable trends. For the unsupported shaft the curves for
c/YB =100 are very similar to thosc for ¢.7B = <. As the ¢/7B ratio decreases for all
shaft conditions, the curves for the N factors exhibit either an iniiial reduction in gradient
or a negative gradient with increasing penetration ratio. This becomes more pronounced at
the higher values of B. Although this effect may be explained in the case of the unsupported
foundation shaft as the negative cohesive force required to replace the lateral support of the
shaft, the continued presence of the phenomenon when the shaft is supported would appear to
be due to the infiexible coupling be.ween the weight-frictional and cohesive-frictional
boundary coefficients.

The variation of the rupture distances for the intermediate ¢, *13 ratios is a reflection
of the changes in N factors with a gradual reduction between the limits of those for a cohesion-
less soil and those for a weightless soil when the shaft is unsupporiod. More significant
changes occur for the different shalt conditions. The influence of shaft support, which is
augmented by the presence of shaft traction is to increase the rupture distance by depressing
the slope angle of the radial boundary of the zone of shearing flow.

4
2.8.  Interpolation

. . . . . N 20 .

Since § is represented by a family of curves increasing in steps of 5°, the main
interpolation is required to cover the N factors at intermediate values of §. Interpolation is
also required for the influence of the shaft parameters cach of which is accounted for at only

a=
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a few specified values. Intemolation has not been attempted {or the data presented in
section 2.7, because of the larger number of variables and because of the complexity of the
interaction between the various parameters.

FFor any given penetration ratio, the variation of N(Nj or Ne) with g can be
expressed with considerable accuracy by:

N = yeVtan 9

where nand v are constants dependent on the penetration ratio. For small values of §f radians,
tan § = §f (the error of such an approximation being only 0.2% for 8 = + 5°). Hence, in the
39 intervals it {ollows that:

N =ue v . e 282,

Since the ordinates in the N factor graphs are logarithmic scales, a lincar interpola-

tions between the 52 curves yields intermediate values of N to a high degree of accurucy. Tin

intermediate values of the rupture distance may be obtained in a similar manner.

For the calc ilation of the N, factors at intermediate values of &, the angle of inter-
face fricticn is considered 2s a fraction of the angle of internal friction and this ratio varies
from zero for a smooch shaft to unity for a perfectly rough one. The variation of the N+
factor ~ith the &/@ ratio is substantially linear (Fig 2.8.1.). The following rclationshijs
can th. .. be established:

where Ny is the requiied value of Ny and No and Ny g are the corresponding values of
Ny at & 7 B, respectively. A snmllal form olyequanon 2.9.3. may be derived for the inter-
mediate values of the /B ratic which exhibit the same trend with respect to the &/0 ratio
(Fig 2.8.2.).

The Ny factor is also shown to exhibit a linear relationship with variation of the
shaft cocfficient except at the lower valucs of & which are not directly applicabk to 2
cohesionless soil (Fig. 2.8.3.). The form of the interpolation equation is identical to that for
the /¢ ratio.

0 - (k e - k - Y [: “
Nyg T Ny 1[_‘\:7'[;/-\’?9 e “)/(kp ka e ettt

where Ny is required valdue of Ny and Noyy and N-y', are th ausponding values of N
for the miniumum and maximum values of the shaft coefficient ol carth pressurc. ‘This is alio
applicable w the [/B ratio (Fig 2.8.4.).
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The application of the interpolation procedures is presented in some detail for the
following soil and structural properties.

Soil Properties: § = 405, » = 0.061bin
Soil-structure interface variables: § = 3209, kys = 1.23
Structural parameters: B = 24w, 2z = 6in

The relevant values of N, factor may be obtained by three successive interpolation
for kyg, & and lastly for §. Interpolation for the shai. coefficient must be considered first
because the limiting values of the shaft coefficient are not the same for the rough and smooth
shaft conditions. Improved accuracy can also be achiceved by interpolating for a shaft co-
eflicient of 1.23 between the value of unity and the upper limiting value rather than between
the value of the coefficient of active carth pressure and the upper limiting value. The eight
initial values of N are obtained from Figs 2.5.1. and 2.5.3. and listed in Table 1. together
with the interpolated Ny, values at each successive step.

TABLE 1
INTERPOLATED N, FACTORS

Initial Values Interpolated Values
g s kst Ny Ny Ny Ny
(kys = 1.23) (ks = 1.23) (kys = 1.23)
Z& = 32) & = 32)
(= 40.5)
80 | 0l 10! 630)!
) 621 )
40 014598 508) )
! ) 690 )
40 40 1.0 | 700} ) )
| ) 710 ) )
40 40 2.2 7 155) )
) 745
45 ol 1.0 !1380) 3
| ) 1370 ) )
45 0 15,829 |1180) ) )
) 1499 )
45 45 1.0 1 1530) )
) 1552 )
45 45 3.0 |1740) |

The difterence between the intempolated N-. factor of 745 and the computed Ny factor
of 736 represents an error of approximately 1%,
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One of the problems encountered in predicting the penetration resistance for a {ooting
is that the shaft parameters are inde'erminate. In the absence of any vertical restraint, the
sand falls into the shaft and forms a vertical sand to sand barrier along the axis of the [ooting.
As the sand in this region is completely disturbed. it must be at the minimum density. it may
be assumed, therefore, that the material is close to the active state. The value of the angle
of interface friction probably lies between zero and the value of § at minimum density.
Similarly, ihe value of the shaft coefficient of earth pressure is probably between the active
value and unity.

It is proposed, therefore, that adequate accuracy may be achieved from the Ny values
for 2 shaft coefficient of unity interpolated for the value of the angle of interface friction equal
to the value of § at minimum density.

2.9. 1 :nerent Errors

Some penalty must be paid in fulfilling the requirements of rotational equilibrium. This
penalty, resulting in some inherent errors in the calculation, may be assessed from the varia-
tion of the values of the cocfficients of carth pressure and the stress distribution along the
sides of the wedge and along the plane shear zone boundaries. For simplicity, the errors for a
cohesionless soil and for a cohesive soil are analysed sequentially. .

From the initial assumption that the wedge boundary is straight, it is logical to adopt
the hydrostatic distribution for the normal stresses dependent on the weight of the displaced
material, As sinkage increases, the centre of pressure for the weight-frictional component
rapidly moves lowards the mid-point of the wedge boundary (Fig 2.9.1.). The effective move-
ment of the centre of pressure is exhibited in the N+, curves whose gradient increases with
penatration ratio. The assumed stress distribution on the wedge boundary suffers from two
known sources of error, particularly at the deeper sinkages. First, the material has inherent
frictional properties, whereas hydrostatics is applicable to frictionless media. Secondly, the
stress distribution assumed for the wedge boundary differs from that for the pair of failure
planes. In both cases, however, the error is minimised because the total length of the wedge
boundary is small in relation to the total depth at which the discrepancies betweer the stress
distributions become significant,

The same hydrostatic distribution is used for the weight-frictional stresses on thic
foundation shaft. This seems adequately justified by the experimental data 7% on the varia-
tion of skin resistance with foundation depth up to a penetration ratio of 10 in compact soil.

Using a hydrostatic distribution on the shaft makes it impossible to use the same
distribution on the two failure boundaries of the plane shear zone unless @ = 0. The introduc-
tion of an exponent to vary the pressure distribution alung these two boundaries satisfies the
equations of equilibrium. However, the curved distribution counld not occur along a straight
failure boundary and it is reasonable to assume that this failure peometry is an approximation
to the curved boundarier .hown in Fig 2.2.4a.

The rather nebuivus errors involved in the determination of the boundary conditions for
the plane shear zone are hest assessed from a study of the calculated values of the boundary
coefficient, the boundary exponent and the slope angle, and an understanding of the complex
mechanism for achieving cquilibrium. The respective values of these parameters over a range
of ¥ are plotted for an aroitrary value of the shaft coefficient of unity when the shait is
peifectly smooth and perfectly rough (Figs 2.9.2. 10 2.9.5.). The equilibrium mechanism may
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be considered in two parts: first, for a constant slope angle and varying pressure distribution,
and secondly for the opposite case. Taking a specific value of the penetration ratio, the
shaft force is constant for any given set of shaft parameters. In the first case, the magnitude and
and direction of the ferce due to the internal weight of the soil mass remain constant and the
directions of the boundary forces are defined by the slope angle. Under these restraints, the
magnitudes and lines of action of the boundary forces are also defined. They may be achieved
by either increasing the value of the boundary coefficient and decreasing the value of the
exponent or vice versa. The stress distribution for the former case is more uniform and that
for the latter increases rapidly with depth. In general terms, the uniform distribution applies to
a smooth shaft and other to a rough shaft. In the second case, the slope angle not only
controls the direction of the boundary forces but also the intemal weight of the plane shear
zone and its centre of gravity, Depressing the slope angle causes the boundary forces to move
towards the intersection ol the planes and alters the relative lengths of the two boundaries.
This, in turn, increases the internal weight of the zone and changes the position of the centre
of gravity such that the stresses on the outer plane boundary are increased. Basically,
depression of the slope angle provides a larger horizontal component of the weight-frictional
forces acting on the outer boundary of the plane shear zone and explains why this process is
involved when full passive pressure is assumed to act on a perfectly smooth shaft.

In soils with cohesion, the houndary coelficient and exponent additionally contro! (in
modified form) the divergence of the cohesive-frictional stress distribution on the pianc shear
zone boundaries from that described as uniform along the shaft and wedge Loundaries so that
equilibrium conditions may be satisfied. The variation of both the boundary coefficient and
exponent with the penctration ratio is shown in Figs 2.9.6. and 2.9.7. for various shalt
conditions and ¢/¥ B ratios. The effect of increasing thie ¢y} ratio is to reduce the value of
the houndary coefficient and (o inciease the value of the exponent. I or both the unsupported
shaft and the smooth shaft, the value of the coefficient tends towards unitv and that of the
exponent towards zero. In the case of the rough shaft, the equilibrium condition is more
difficult to achieve because of the shaft traction which is gererated by the adhesive forces in
addition to the ‘vertical’ components of the {rictional forces on the shaft. The large shift in
stress distribution on the boundaries of the plane shear zone mav be achieved only by high
values of the exponent which in turn governs low values of the coefficient. This explains why
equilibrium was not achieved when the ¢/B ratio exceeds unity,

There is no rigorous method of evaluating the errors for the approximate houndary
conditions. In a negative sense, the variation in the boundary parameters from those accepted
for zero sinkage, indicate the undisclosed ¢rrours of carlier theories in which the combination
of hydrostatic and uniform stress distributions is adopted. Moreover, the variation indicates
inconsistencies in the present theory because the equilibrium of the radial shear zone is still
not considered. A suitable extension of the existing stress distribution on the plane boundaries
to the spiral boundary would enable the only remaining unknown forces in the system to be
determined, The equation of equilibrium for the radial shear zone could then te calculated and
used to assess the existing errors. These crrors could be eliminuicd by changing the spiral
boundary 1o some form of ellipse whose shape could be detennined by the angle of dilation.
The adoption of a variable angic of ditation would permit variation in density to Le reflected
in the shape of the failure boundary. These inprovenients, however, could be achieved only
at the expense of additional theoretical complexity,
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2.10. Comparison with Other Theories

The theory of penetration resistance is compared with existing theories of bearing
cepacity for both o foundation resting on the soil surface and for a hwried foundation in
cohesionless and in cohesive soils.

The values of the surface bearing factor, N+, are shown in Fig 2.10.1. Terzaghi’s
and Meyerdiol's Ny factors were computed by lhe author; the former are exactl\ the same as
those published by Lotkm53 but the latter differ slighily from those published in reference 24,
patticularly for @ = 59, 109, 15°, and 50°. Ballas' values?® are derived with the aid of his
graphs for the ratio £, and Mizuno's values®* are obtained from his published graphs.
Published values are used to construct the curves of Caquot and Kerisel’s®S and Lunderen
and Mortensen’s 8 N~ factors. As the cument theory is based on the maximum size of the
wedge with no minimising procedures, it is not surprising that the Ny values tend to be
higher than most other theories.

The comparison at shallow depths of penetration is complicated by the fact that none
of the bearing capacity theorics consider shaft suppon in a logical way. Terzaghi's theory of
surface bearing capacity may not be extrapolated beyond a penetration ratio of 1 because the
soil above the base of the foundation is considered as a pure surcharge with no boundary
stresses. Ballas' theory is restricted to a penetration ratio of 1.5 because further extension
would lead to an impossible figure of rupture when shaft support is ignored. Meyerhof
considers shaft support as a surcharge effect for a figure of rupture dissimilar to that for the
determination of the bearing capacity due to the internal weight of the mass of soil at failure,

The dimensionless graphs p/} Y3 and p/c are used in Figs 2.10.2. and 2.10.3 tu
account for the combined effects of '\), AY and N, .\, » Ng, respectively. The ox(‘osxiwl\
small scale of Meyerhof’s published graphs!® of the combmed factors in the re]e\am ranp
precludes a direct comparison with his work. For expediency, Wills resulis32, fora
restrained version of Meverhol's theory, are presented for m = 1. From a few test computa-
tions of Meyerhof's theory, it would appear that the effect of restraint on the pole position is
to increase the Noy factor from a value less than the current theory to a value greater than
the current theory when the shaft coefficient of carth pressure is unity and the mu\rfau'
friction is zero. {The N factor is not affected by restraint).

Although direct equivalence of shalt conditions is not possible in the comparizon, the
present theoretical curve exhibits a marked similarity to the existing bearing capacitios
theories adopting some form of spiral failure Loundary. The divergence of Ballas’ results

from the gencral trend is largely due to the use of a failure boundary which does not uppear
to have cxperimental validity.
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3. APPARATUS, SOIL AND CXPERIMENTAL PROCEDURE

The experimental verification of a pressure penetration theory requires apparatus for
the measurement of the forces on a rigid model foundation as it is pushed vertically into the
soil. The evaluation of two dimensional soil movement necessitates the use of a glass-sided
tank, and in order to cover the complete soil range, tests must be conducted in at least three
soils, a cohesionless soil, one with cohesion and friction and a frictionless material. Each
soil must be processed to a state which can be readily reproduced for a number of experiments,
and the soil parameters must be obtained for these precise conditions. Finally, the interface
effects due to model testing in a confined space, the influence of the glass interfaces and
sources of error incurred by the photographic analysis of the failure geametry must be
investigated.

3.1. The Pressure Penetration Apparatus

Pressure penetration experiments were conducted on a large penctrometer developed by
U.S.A.T.A C. (Fig 3.1.1.). This was used in order to obtain the structural rigidity nccessary
for the development of symmeirical soil failure. The penetration device is mounted on the base
of a vertical shafl running through linear bearings. This prevents any lateral movement of the
shaft. Although the shaft is not completely restrained in rotational movement, it did not appear
to occur during the tests. The vertical shaft movement of approximately 42in is controlled
by two double acting hydraulic cylinders. The penetration speed may be varied from 12-60 in min~
by means of a variable fiow hydiaulic control unit,

1

A glass sided soil tank was mounted on a stand to simplify the photographic procedures.
The maximum size of the tank was limited by the weight which could be conveniently man-
handled, and by the volume of soil which would be readily processed between experiments. The
intemal dimensions of the tank were 45 in long, 35 in high and 6 in wide and it containecd
approximately 500 lb of soil 10 a total depth of 30 in. As the extent of fatlure is a function of @,
provision was made for varying the quantity of soil by using two vertical compression platcs
which could be moved inwards to give any desired tank volume.

The base and ends of the tank were of 6 in x 2 in channel. A ! in thick ‘Plexiglass’
sheet was used to form the front of the tank and a % in thick sheet of plywood formed the hack.
The ends were braced along the length of the tank and the sides across the widtk of the tank
by a series of removable cross bars (Fig 3.1.2.). (It was subseguently found that the 2 in x i in
crossbars had io be strengthened by a factor of 3 to minimise elastic deformation of the cross-
bars during tests in very compact materials). On the inside faces of the ‘Plexiclass’ front and
the wooden back were placed two sheets of /8 in thick window glass to form the soil glass
interfaces. The inner sheets were used to reduce replacement costs: these were expendable
when scoring occurred. IFor a free flowing material such as dry sand, the replacement of the
glass was only possible when the box was empty. For self supporting cohesive materials, the

glass could be replaced without emptying the soil by gently moving the cross bars after
processing.

- The penetration device was designed to measure both the base resistance and the shaft
forces. The outer shell of the penetration device was a channel section measuring 30 in long,
6 in deep and 1% in wide (Fig 3.1.3.). This housed the loading shaflt which had a 6000)L
integral ring dynamometer at the lower end to measure the base resistance. The horizontal and
vertical side plate loads were transmitted to five cantilevers on the loading shaft through
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spherical rod end bearings and small chain links. Any lateral movement of the side plate was
constrained by ball bearings recessed in grooves in the strengthening bars on the side plate
and impinging on the channel flanges. By measuring the harizontal loads with two pairs of
cantilevers, cach with a design load of 100 1b, the total thrust and s point of application
could be determined. The vertical thrust was measured by a single cantilever with a design

load of 300 1b.
y

The base resistance dynamometer was calibrat~d against a standard load cell
(I"ig 3.1.4.5. A lincar relationship hetween strain rate and load was obtained with no
hysteresis effects.

The side plate cantilevers were calibrated by dead weights. As the individual calibra-
tions of the four cantilevers measuring the horizenta! thrust were very uniform, the two signais
from the two lower cantilevers, and those from the two upper cantilevers were added
electrically to give only two outputs instead ol four. On assembling the complete side plate,
however, problems were experienced with the calibration of the cantilevers. It was anticipated
that some interaction would occur between the horizontal and vertical force measuring units,
but unforunately this was combined with excessive hysteresis. This was attributed to sonwe
major misalignments in the assembly ol the cantilever linkage. Although some modification
did reduce the fiiction, there was insufficient time 1o redesign and manufacture a linkare to
eliminate the problem and the existing rig had to be used for the current serics of experiments.
Owing to these factors, a comprehensive series of calibrations were conducted on the side
plate. The penetration device was wounted in a Hartford chuck and measurciments were made
for a series of weights placed at different points along the length of the side plate and thre
different anzles of the side plate— horizontal, 45° and vertical—were also used to assess the
interaction of combined loading (Fig 3.1.5.).

The cantilever calibration curves are shown in Figs 3.1.6. to 3.1.8. The resuits for
horizontal loading do not exhibit too much hysteresis, and by combining the upper and lower
calibration curves, the resultant calibration curve is identical and independent of the position
of the load (Fig 3.1.7.), the interaction obtained in horizontal loading was found 1o be
relatively constant at 9% of the horizontal load (Fig 3.1.8.). This high figure is the result of
minimising hysteresis by increasing the linkage clearances which then intoduced consideratle
slack. An angular movement of only * 49 from the vertical could account for this interaction.
This slack also caused ‘weight transfer’ to occur between the upper and lower cantilevers when
when the side plate was tested at an angle to the horizontal. It was therefore decided that
the total force calibrations could be used but that the location of the point of application of
the total force was subject to an excessive degree of error  The horizontal component of the
force applied at 45° was identical to that found for horizontal loading; the vertical component
was some 8% higher which agrees well with the interaction figure obtained earlier {(FFig 3.1.9.).

The base resistance was recorded against sinkage on an XY plotter and the tkree
force measurements on the side plate were also recorded against sinkage on a multi-pen
recorder. The two sinkage measurements were each obtained from half bridge incorporating «
rotary potenitiometer which was forced to rotate when penetration occurred.

Two further refinements were made to the basic rig. Rough or smooth side plates and
base plates could be fitted to investigate the effect of interface friction. The aspect ratio of
the penetration device may be increased from 3:1 to 12:1 by attaching » wooden black on cach

side of the central measuring unit (Fig 3.1.10). This was used to determine the effect of
the glass interfaces,
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Some of the experimental results used in this report were obtained from an earlier
series of tests which were conducted on a different apparatus using footings without side-
walls. This apparatus is fully described in reference 40 together with the photographic
techniques and the methods emplcyed to reduce the effect of the glass interfaces.

3.2 Soil Preparation and Properties

Tests were conducted in a roller model soil, two dry sands (Ohio and Leighton Buzzard),
damp sand and clay. The rollers were processed manu:illy by rearranging their positions until
any visible failure lines from the previous tests had b en remcved and some degree of compac-
tion had been achieved thmughout the mass. Care was also taken to ensure that completely
uniform packing did not occur.

The dry sand was first completely cultivated by emptying and refilling the tank, then
compacted by an electro-magnetic vibrator until maximum density was achieved and the
surface levelled. In the larger tank, a vibrating probe was also used to ensure even compac-
tion.

The loose damp sand was spread evenly in 2 in layers and compacted by means of a
falling weight compactor to maximum density. The surface of each successive layer was
disturbed before the addition of fresh matenal and final layer levelled to a set depth by a
scraper running alcng the sides of the tank.

Whercas the tank was completely emptied of sand between each test, the clay was not
disturbed. It was processed by filling in the cavity left by the looling and kneading the mass
to obliterate any rupture lines. The surface was levelled to a set depth using the same volume
of clay as a check for the presence of any air pockets.

The diameters of the wooden rollers were /8 in and % in. At a mean density of
0.02 1b/in" the angle of intemal friction was 28°.

The Ohio sand contained rounded particles with a good graiu size distribution
(Fig 3.2.1.). The angle of intemal friction was 40.50 in a density of 0.065 lb in™*. The angle

of repose was 32° at a minimum density of 0.59 1 in,

The Leighton Buzzard sand was a sieved washed sand cgain with rounded particles
but with a very uniform large grain size laying between 12 mesh (0.0553 in) and 24 mesh
(0.0236). At a maximum density cf 0.0603 1b in"® the angle of internal friction was 45.3°, At
the minimum density of 0.054 1b in-?, { was 329 Using these two values of the density, the
maximum dilation is 10%,

The damp sand was a fine, washed ‘plastering’ sand with sharp grains and had a
moisture content of 4.53%. At a maximum density of 0.0672 1L in™? the soil preperties were
¢ = 434 andc = 0.3 1bin"3. At minimum density of 0.047 iL in™, ¢ = 33°and
c = 0.21bin-2.

The clay had a cohesion of 1.8 b in*2 and a negligible friction angle of between 2.5
end 4°, The mbisture content was 32.8% (1).B.) and the density 0.0625 1L in"3,
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4. ANALYSIS OF RESCLTS

The measured pressures as a function of the penetration ratio gave good agreement
with the theory in all materials. The photographs showing the failure boundaries in the roller
model were almost identical with the theory and those in dry and damp sand were cncouraging
in that they were of the same fonn as the predicied boundaries, Unfortunately, the base wedpe
was much flattened and the overall width of failure in sand was only about hall as big us the
theory predicts. to the elay, the failure was markedly different to that predicted.

4.1 Penctration Failure in the Roller Model]

The theoretical determination of the base resistance and the failure geometry depends
on the coefficieni of carth pressure and the angle of interface friction on the shaft which wepe
found hy experiment to be 0.45 and 129, respectively. The experimental penctration
resistance together with the predicted curve for kg = 0.45and &
Fig 4.1.1.

129 is shown in

The failure geometry is shown in a series of photographs of a 2 in wide sand coated
foundation driven progressively iuto the roller model from the surface to a penetration ratio
of 10 (I'igs 4.1.24. to 4.1.2}.). Mobilisation of the material did not always occur on both
sides of the foundation shaft at the same instant ceven though great care was taken to en=ure
that the penctration device was vertical. A particularly good example of symiretrical failuw
is shownin Fig 4.1.2). After @ number of tests, the boundary of the fatlure zwone was clonriy
visible by stilt phatography (Fig 3.1.1.). This was made possible by the mixing action of
successive penetrations within the mobilised material. Rollers were carried dovn in the we dire
attached 1o the base of the footing. (Figs 4.1.3.). The base wedge angie vaned botwers 570
and 60" bereath a rough footing. However, it is not possible to lay too much stress on
figures hecause there was a tendency for the rollers to be arranged in the ideal picking fo
tion by displacing the larger rollers (Fig 4.1.4.). This results in a base wedge angle of 6
which does not necessarily refleet on the actual value of O or the cormrect stress field when
both sizes of rollers are present.

A cemparison between the experimental and theoretical failure geometry ix <hawn in
Fig 4.1.0. for three penetration ratios. Considering the experimental variation Letween 1o,
the relationships are very satisfactory. At the largest penetration ratio, the pliotosruph of 1he
roller movement (Fig 4.1.2i.) clearly shows two roller streams, one moving in a direction
similar to that predicted, and the other moving outwards and upwards following the line of
least resistance for uniforialy packed rollers. The movement of both streams is largely
dissipated before they reach the surface.

4.2 I'ailure under Rough Strip Foundations and Footings in Dry Sand

Preparatory tests with the penetration device were conducted in a large imass of dev
sand to determine the effect of density on the base resistance and on the appearance of
rupture planes at the sand surface. The influence is demonstrated Ly the two presswre ponctra-
tien recerds for Ohio Sand (Fig 4.2.1.). In soil at the minimum density the trace is a smooth
curve which,is the result of localised compaction failure within the soil mass. Almost no
surface upheaval occurred at the larger penetration ratios. When the compressibility effect 15
eliminated, the experimental penciraticn resistance is much less uniform with cach succcssive
peak relating to the development of a clearly defined failure boundary. The pressum tonshs
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represent the continuved failure along an existing failure plane. Thus any predicted curve
should pass through the pressure peaks. The theoreticai penetration resistance in Fig 4.2.1.
is based on a measured coefficient of earth pressure on the shaft of 1.23 and & was assumed
to be equal to #f at the minimum density of the sand.

The base penetration resistance for a long strip footing (aspect ratio of 6:1) in compact
Leighton I3uzzard sand was used as a control test to detemmine the effect of the glass inter
face. As the shaft parameters for a footing are indeterminate, the penetration resistance is
predicted in accordance with the assumpticns given in Section 2.8, f'he experimental and
theoretical curves shown in Fig 4.2.2. exhibit a close similarity. The comparison between
these results and those shown in Fig 4.3.2. indicates that two dimensional failure may be
simulated in a glass sided soil tank,

4.3 Failure under Rough Footings in Dry Sand

A series of phatographs record the soil movement which was caused by a 2 in wide
sand coated footing driven pmgressively ‘nto dry sand from the surface to a penetration
ratio of 3 (Figs 4.3.1a. to 4.3.1f.). The location of each of the succession of photographs,
together with the theorctical base resistance is shown on the XY plotter record for tiis '
particular experiment (Fig 4.3.2.). Photographs (a) and (b) show the initial development of a
long sharp wedge and sand particle movement extending very widely on both sides of the
footing, Photographs (c) and (d) are taken just after the first soil failure and shcw a much
blunter wedge and smaller zone of moving sand. Photograph (e) again shows a sharper wedge
and a wider zone. Notice that this coincides with the second pressure peak on the NY plotter
recond. This cycle is repeated throughout the test and is accompanied by a gencral widening
of the failure zone with increasing depth as shown in photograph (f). The existence and the
variation in the size of the wedge is shown more clearly in photographs taken with the camera
attached to the footing (Figs 4.3.3a. and 4.3.3b.). The maxinum pressure tends to occur
when the wedge is atits sharpest and the peak values correspond well with the theory.

The variaticn in wedge shape and the smaller failure boundaries are attributed to 1l
variation in @ with changes in density. The dilation of the sand due to the first footing faiiure
was measured with a planimeter from photographs 4.3.1b. amd 4.3.1d. In both cases the
volume of sand has increased and corressonds to an 8% cxpansion of the sand lving above
the soil failure Loundary. Photograph.. 4.3.1d. also shows two edges to the surface heave.
The inner edge corresponds with the intersection between the main failure boundary and the
surface of the sand. The outer edge is much further out and represents the much large volume
of sand mobilised in photographs 4.3.1a. and 4.3.1b.

As the footing begins to sink, the sand deforms. Since it is originally at its maximum
density, it dilates and the value of §f diminishes. This process tends to spread from the
edges of the footing, and before the complete failure zone develops, the footing is operating
in a sand with @ = 32° instead of 40°. For such a material, the failure surface is only half
as large. A secondary failure thereflore occurs entirely within the soil loosened bv the initial
penetration of the footing. It is shown in Fig 4.3.4. that the measured failurc surfaces
correspond very closely to the theoretical one for @ = 32° This comparison is based not
on the same pcnetration ratio for theory and experiment, but on the same position of the wedge
tip. As the original wudge tip constitutes a pattem of weakness, it tends to remain in its
initial position. The wedge angle is reduced within the loosened material by the sinkage of
the footing which is required to produce the first failure.
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With further penetration, the footing nears the original wedge tip and fom:s a new sharp
wedge. [Prom this wedge, the soil is mobilised outwards and upwards to start a new cycle of
soil loosening, weakening and failing.

The magnitude of the recorded penetration resistance confirms this explanation. It is
only the peak values of the pressure that equal the theory. In between, the pressure [alls
towanls the value appropriate to the lower value of . There is a tendency for only the first
peak to reach the predicted vaive and all the subsegquent peaks to ke lower. This is because
the subsequent failures have previausly loosened sand above the newly generated boundary.

44 Failur under Smooth Footings in Dry Sand

Phatographs 4.4.1a. 10 4.4.1d. arc of a lubricated glass footing taken with a camera
rigidly mounted to the footing and show the fixed wedge and, less clearly, the failure zone
boundary. The experimental penctration resistance is shown in Fig 4.4.2. The photographs
(and others which were iaken) show that the failure zones are of the same magnitude as thoze
for the rough footing and have a wedge behaving in the same cyclic manner. The only
difference is 1hat the wedge can disappear altogether and, on occasion, a double wedee can i
formed. This latter phenomenom together with the maximum size of the wedge at the sirface
arc illustrated in Fig 4.4.3.

The cycle variaton of the wedge beneath a rough and smooth feoting is shown
diagramnatically in Figs 4.4.4a. and 4.4.4b. Note that the tip of the original wedye, resting-
on the compact soil, remains constant throughout one cycle. The minimum size of tie wedpm:
depends on the mobilisation of shear stresses on the base of the footing. Bencath a rons
footing, the wedge never completely disappears (2nd stage of Fig 4.4.4a.). A larger weder
then forms 10 start a new cycle but it never reaches the maximum size of the wedge present
during the initial process because the upper hall of the new wedge is developing in {reviously
loosened material.

Beneath a smooth fuoting, no shear stresses can be developed and the rompleie cyel
ircludes two further stages. In some cases, a mere vestige of the wedge is retained tird stage
of Fig 4.4.4b.). Finally, the footing may penetrate until it reaches the original curved
boundaries cmanating from th~ tip to form two planes of weakuess at an angle of 7/2 + /2
to each other joining at the ¢ ntre of the base. Thus, they form the inner boundarics of two
wedges such that the soil flows horizontally outwards from the centre of the footing (41 stare
of Fig 4.4.4b.). Thereaiter, the cycle is repeated. The new wedge is almost as large as the
original because it is being developed in almost totally undisturbed material. This explains
why all the peaks in the pressure penetration record are of the same amplitude as the first
peak and why they occur less frequently than in the record for the rough footing.

There is no theoretical explanation for the cyclic variation of wedge zhape based on
the assumption of a rigid footing penetrating a homogeneous material. The observed tendency
for assymmetrical failure after the initial mobilisation of the soil imposes considerable dateryd
thrust on the wedge and can cause its partial destruction (I'ig 4.4.5.). The mode and extens
of the destruction is then determined by the interface properties along the bLase of the fouting:.
in the presence of interface friction, the lateral thrust is imparted to the footiug, causing it tc
‘weave' during penetration. Slices of the wedge are removed by a shearing action until the
base angle reaches the value of @. At this point, the lateral thrust is eliminated because the
resultant forces, acting at an angle of § to the normal on the sides of the wedge, are vertical
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and maximum shear stresses can be developed along the base to prevent a further reduction

in the wedge size. The footing must now displace the dense sand beneath the blunt wedge,
Applying the principle of conservation of energy, the sharp wedge is formed when the penetra-
tion pressure for the development cf a new failure boundary through the undisturbed soil is
less than that for the blunt wedge. The proccs« is similar for a smooth footing except that
the absence of shear stresses permits the complete disappearance of the wedge without
imposing any lateral thrust on the footing itself. '

4.5 Penetration Failure in Damp Sand

Preliminary experiments were carried out to assess the dilference between a mugh
and smooth footings. No difference in either th= failure patiems or the presswres could be
detected, This may well be attributed to the difficulty of eliminating soil to structure
adhesion. The wedge beneath a lubricated glass footin ; (I“ig 4.5.1.) may be compared with
the wedges for a sund coated base (Iig 4.5.7a.).

The main experinients were with buried footings at initial penetration ratios of 0, 1,
2 and 3. The fooring was driven until complete failure was observed in each case. The
failure pattems are shown in i'ig 4.5.2. to 4.5.5.

Failure always occurred on one side of the footing first, with a relatively sharp wedge
(Figs 4.5.2., 4.5.4a. and 4.3.5a.). Iurther sinkage was necessary to produce failure on the
other side, and by this time the wedge was smaller (Figs 4.5.3., 4.5.4b. and 4.5.5b.). The
photographs show the same genera!l patterns as in div sand. The failire surfaces are of the
correct form but are much smaller than the theory predicts., The predicted and experimental
failure patterns are compared for penetration ratios of 9 and 2 in Fig 4.5.6.

The development of the wedge Leneath a roush footing is illustrated in Fig 4.5.7.
Initially, the theoretical sharply pointed wedge develops but later there is a tendency to form
a double wedge on which appear the halt sized ilill type failure surfaces.

The soil failure seemed to be different to that cccuming in ry sand where there was a
general disturbance threughout the soil progressing from the corner of the {ooting. In damp
sand, it appeared as if large masses moved bodily. 1t is clear that Jarge cracks could apen np
to separate the various parts of the mobilised sand at failure. wrthermore, the first signs of
failure occurred in the decpest laver, but before they were fuily deveioped, much smaller
failure surfaces were generated at the mid point of the original wedge and Lroke to the surface
first,

The successive development of the failure surfaces for a driven footing are shown in
Fig. 4.5.8. In this case, there is an obvious tendency for the successive failures to rise
sharply upwards and coalesce with previous fatlures, thus producing a very smell rupture
distance.

The force measurements for both buried and driven footings are shown in FFig 4.5.9.
together with the predicted values. Once again, there is good agreement considering that the
interface effects were higher in this material. (The adhesion and interface friction were not
reduced by the lubricant to the same degree as in dry sand.)

Once again, the measured value of @ for the sand in its denee state gives the correct
theoretical value for the base resistance but the failuie suiface 1 ~ach smalier and
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corresponds to the lower value of . The explanation used for the dry sand does not seem

. appiicable here. The photographs do not exhibit much evidence of general dilation throughout

the soil mass. It seems more likely that the frictional resistance was reduced and the cohesion
almost eliminated only along the actual lines of rupture. The problem of soil compressibility
was only overcome at the expense of over-consolidation and the resultant material exhibited
some recovery after deformation. This, combined with the evidence that parts of the soil were
in tension, could yield the observed failure geometry and the rapid redugrion in the penetration
resistance after the ciitical point of failure.

A further noteworthy observation was the marked tendency to unilateral soil failure.
Perhaps this situation should be investigated theoretically. It seems possible that an
alternating succession of one sided failures is kinematically feasible and might lead to a
reduced size of failure pattern.

4.6 Penetration Failure in Clay

Entirely different trends were noted in clay. The pressure penetration traces for huried
footings driven from penetration ratios of 0, 1, 2 and 3 were all smooth curves (Fig 4.6.1.).
In each case, the gradient of the curves rapidly reduced to a small constant value after the
footing displacement exceeded a distance equal to the width of the footing. An example of the
total deformation of the soil during this footing displacement is illustrated in the superposed
photograph (Fig 4.6.2.). The magnitude and direction of the actual soil deformations were
obtained from the two images of each grid intersection and presented in a displacement
diagram (Fig 4.6.3.). Note the vertical displacement of the soil together with the complete
absence of any bulging of the unsupported walls of the excavation. It was also found that the
extent of failure increased in proportion to the depth of penetration.

This type of failure was rather unexpected. It was anticipated that the soil, which was
displaced by the passage of the footing, would flow into the excavation and rapidly yield some
constant maximum valve for the base resistance independent of depth in accordance with
Jaky’s theory® Although Jaky’s theory is for c/YB = o, it does compare well with the
experimental base resistance for ¢/YB = 15, but not with the failure geometry. The
observed failure patterns are attributed to two factors, the effect of adhesion and the effect of
weight. First, the failure boundaries shown in Fig 4.6.3. can be reproduced theoretically in
the absence of weight only when full passive earth pressure is acting along the walls of the

“excavation. Although no side thrust was used in the experiments, a small calculation suffices

to show that the adhesion of the glass interfaces is more than adequate to create the necessary
side thrust for this type of failure. The introduction of gravitational stresses also tends to
increase the size of the zone of mobilised soil. Although some tentative conclusions have be
been drawn, confirmation of failure mechanism in clay depends on the complete elimination of
the adhesion by a suitable interface film which controls the adhesion without also affecting
the cohesion. '

4.7  Comparison with Other Experimental Research

The cument theory tends to underestimate the surface bearing capacity in sand but to
a lesser éxtent compared with other theories with the exception of Balla’s theory. For example,

-Selig and McKee#! measured an average base resistance of 22.2 1b in2 using 3 in wide rect-

angular footings with an aspect ratio varying from 5:1 to 7:1. The density of sand was
0,065 1b in? “and @ was ‘around’ 41° -'tn mucte the author - and vield a theoretical base

_resistance of 19.51b in-2.
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Comparisons between driven or buried footing tests results and the thraretical values
is difficult beceuse the sand faliing into the cavity left by the footing present indeterninate
shaft conditions. An indication of comparative trends may be obtained by assuming the values
of kys and &tobe 1 and 0 respectively in accordunce with the reasoning stated in scetion

2.6,

Lebeque 39 cenducted driven footing tests in a poorly graded, round grained sand at
three different densities ranging from 1425 gm cm™ e 1.57 s em=? (0.0515 1h in? and
0.6566 15 7 ) foi winch Cvanimd Dow 027 10 367, As the properties of the sand show a
marked similarity to the Teighton Buzzard sand used in the curient series of tests, it is
suspected that maximum density was not achieved. Thus, compressibility and dilation effects
may be present, and only the results for the dense sand are considered (I'ig. 4.7.1.). The
discrepancy between theory and practice is greater near the surface. This may well be due to
compressibility, which would yield a higher experimental bearing capacity because compac-
tion under the footing increases the density of the sand prior to failure. The improved
correlation with dep.h may be atiributed to the fact that the footing penctration required to
cause failure Lecomes less significant in terms of the total penciration depth for the larger

penetration ratios.

The correlation between the theoretical penetration resistance and the experimental
data ohtained by Wills in very compact Ohio sand show an entirely opposite cffect
(I'ig 4.7.2.). There is close agreement up to a penetration ratio of 2 and thereafter the
experimental values increase more rapidly thanthe predicte i values. Inaccuracies in the
measurement of @ may well explain this diverpence. Althous. the peretration test was
conducted in sand at a den~ity ¢f 0.067 Ib in™, the initial densicy of the triaxial shear test
samples was 0.039 1b in73. Using confining pressures of up to 130 psi, Wills ahteined @ = 3n°
whereas the author obtained @ = 40.5 in the same sand at a density of 0.065 1b in™ (c.f,
section 3.2.). The values of No are extremely sensitive to changes in @ when £ is larie.
For example, a 1° change in § ' from 409 t0 417 increased the valuc of Ny by approxinately
205, This increase would be sufficient to vield a predicted curve almost identical with the
mean experimenta! curve throughout its length,

With this general tendency towards theoretical undeicstiniation,_ it is rather suprising
to find that the theory overestimates the test data obtained Ly Biarez ™ in the roiler mode!,
At a penctration ratio of 2 the theoretical value T35 29.6 kg cm™! as appesed 1o an averape
experimental value of 22.5 kg ecm*, This tends to indicate that the model is suspect,

Biarez found that the value of the coefficient of earth pressure ks, on the rough sices
of the foundation was 2.6 for § = 26%. This is also sumprisingly high. From an anaivsis of
skin friction measurements on piles, Meverhof found that k-, varied fror 0.5 for loose sand
to 1 for dense sand. Similar resnlts to those of Meyerhof are quoted by Vesic for long rect-
anguiar foundaticns.
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S.UURTHER THEORETICAT INVESTIGATIONS

Pucing the devetopment of the theory of penetration resistance, ancillary investipations

.y .
)’h'l\|(‘d Sopae ptegesimes resnlis,

5.1 The Mt

sin~ Fallaey

The bearing capacity of a foundation is frequently derived by taking moment: of «il
the soil [oices about sows Sonvoniont poiat, Bhen the curved boundary of the zone of shearing
{low is described by the equation to the loparithmic spiral, the caleulation is simplified by
taking moments about the pole of the spiral because the frictional forces acting on the spiral
boundary pass through the pole of the spiral and may be neglected in the moment equation. In
erder to overcome the problem that the stiess field composed of radii and Jogarithmic spirals is
true only in the case ol a weiphiless sotl, a smaller failure zone with a medified shape is
achieved for a soil with weight by relaxing the constraints on the position of the pole. The
pole does not necessarily lic at the corner of the footing, but at some point close to it such
that the resultant bearing capacity factor, Ny, is a minimum. As has been described previously,
this view is rejected because the resulting inconsistencies in the calculation appear to be
greater than the original problem, Nevertheless a considerable amount of work was expended in
investigating the effect of the wandering pole.

If the poic is restrained to move along the boundary between the plane and radial shear
zones or that line extended (line OBD, Fig 1.4.1a.), the variation in the value of the resultant
frictional force on the contact face, BC, is dependent on the distance, OB, defined as A, which
defines the distance of the pole from the corner of the footing and is taken as positive when the
pole lies outside the failure zone. Lotkin®? published the general shape of the curve satisfy-
ing the equation:-

Ny = [ (\) e 511

The particular curve for § = 30%is shown in Fig 5.1.1.
g

It is observed that the resultant factor can become infinite when the pole is located at
quite small distances from the position of Apjp st which Ny is a minimum, This is simply
explained by the fact that when the pole is located on the line of action of the resultant force,
the moment arm becomes zero. llence, the resultant force and Noy tend to infinity. Similarly,
if the pole is located immediately beyond this limiting value of A, the value of Ny tends 1o
a negative value of infinity, even though the failure geometry is entirely reasonable and the
change in shape is almost imperceptible.

Although the increasing values of N for negative values of A are related to increasing
size of the f{ailure zone, the minimum value of Ny is usually located at a positive vaiue of A,

Hence. the minimum value of N+ is governed, to a large extent, by:-

(a)  The point of application of tne resultant force for soil weight on the contact
face or wedge boundary and its direction.

(b} The variation in the extent of failure.

(c) The angle of inclination of the contact face with respect to the horizontal

(d) The degree of constraint placed on the location of the pole.
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As the point of application of the force is normally governed by hydrostatics and the force is
assumed to act at an angle @ to the normal, the effect of these parameters can be considered
constant. The location of the pole does affect the extent of failure, but the variation is not
systematic - the changes in extent of failure and in values of N+, are considered in more detail
for a fixed pole (cf section 5.2.). The most significant effect on the bearing capacity is
achieved by increasing the backward rake of the contact face (wedge boundary) or by decreas-
ing the angle of inclination of the line along which the pole is restrained. Separately or
jointly, these changes serve to create greater constraint on the possible positions of the pole
and, hence, increase the minimum value of Nv.

In perspective, then, Ohde originally devised the minimising procedure for retaining
walls for which the calculation was an acceptable way of optimising for the interface proper-
ties along the contact face. Terzaghi increased the constraints on the pole by considering a
backward raked contact face. Meyerhof relaxed the constraints again by adopting the
unrestrained pole no longer confined to a line, but free to take any position in two dimensional
space. Fortuitously, however, this freedom of movement was largely inhibited and governed by
the same limits determined for the restrained pole i.e. the line of action of the resultant force
effectively halving two dimensional space and an excessively large failure geometry. The
location of the unrestrained pole is thus never fzr removed from the location of the restrained
pole. Wills, modifying Meyerhof’s theory, again restrained the pole to the boundary BD or to
that line extended (Fig 1.5.1.); here the angle of inclination of the boundary to the horizontal
decreases with sinkage. Ilence the constraint is more severe and the final answer is nearer to
that achieved in the absence of any minimising procedure.

The effect of the minimising techniques on the value of the surface bearing capacity
factor N, may be summarised, for g =40 andy = 45 + §/2, as follows;-

No minimising (corner pole) 163
Line restraint 129
Unrestrained 119

At a penetration ratio of 2.5 the approximate values of the N+ factor for the pole restrained to
a line (Wills) and the unrestrained pole (Meyerhof) are 640 and 500 respectively. The trend
indicated by these figures is similar to that for the surface case.

It has been demonstrated that different pole locations can provide a large number of
solutions for the resultant forces generated on the contact face by the soil mass during failure.
" This is plainly impossible. This absurdity results from using a method which does not relate
the frictional forces on the spiral boundary to both the soil properties and the dimensions of
the failure surface.

The apparently cunning method, whereby knowledge of the frictional force on the spiral
boundary is not required, is fallacious. The resultant force cn the wedge boundary can be
calculated only if all the forces are known, are shown to be in equilibrium and are compatible
with the soil properties. Such knowledge can only be gained by a process of rigorous analysis
but owing to the complexity of the problem has not been fully achieved. A reasonable
-alternative for immediate applications is to accept a plausible failure surface with some
rigorous foundation and eliminate the dangers inherent in the minimising procedures.

s n



5.2 The Effect of the Wedge Angle

The comparative effect of the wedge angle, ¥, on the surface bearing capacity is more
apparent when minimising techniques are eliminated. For the pole of the spifal located at the
corner.of the footing, the factors Ng, Nq and N,y are given by the following equations:-

Ne = tany + cos (¢ - ) Eé (1 + sin@) - 1] T e 5.2.1.
: sin @ cos Y t
Ny = cos (Y - 9) a; tan (w/4 + 6/2) . 5.2.2.
cos Y
N, = cos(y - f) a; [cos ¢ + 3sinfcos (-0 - cos @ sin(y-@)
2 cos 2¢ 1 + 8sin 2¢

2
+ ap 3.(cos Y - .sine) + 3sinfsine *+_cos § cos e} - tan y
4 1 + 8sin zﬂ

where ag = e (r -y - & tanf 44 the range of values for the wedge angle is

§ <y < /4 +0/2. In order to complete the comparison, the rupture distance, f, measured
horizontally from the corner of the footing to the point at which the failure boundary joins the
. soil surface, can be used in dimensionless form, f/B, to give the extent of failure:-

f/B = agcos €/cos y 5.9.4
. 5.2.4.

The rupture distance and the bearing capacity factors are calculated for the two limiting
values of the wedge angle over the complete range of #§ (Figs 5.2.1a. and 5.2.1b.). The
variation in the sime functions with respect ot Y is also given for a constant value of f
(Figs 5.2.1d. and 5.2.1e.). Although the rupture distances increase exponentially with respect
to ¥, the curves for the N and N; factors always exhibit a negative gradient. The curve for
the N-y factor resembles a parabola reaching some minimum value with respect to Y between
almost identical values of the Ny factorat ¢y = @ andy = w/4 + (/2. Thus, the value of
the bearing capacity factor is not related to the extent of failure.

_ This is completely unrealistic and is determined by the mathematical constraints
imposed on the free body of mobilised soil rather than to the mechanism of failure. Any system
of fcrces can be resolved into the resultant horizontal and vertical forces acting at any point
iz the plane plus a couple. However, the force required to balance the couple depends on the
len;th of the moment arm which in turn depends on the line of action of the resultant force
relative to the corner of the footing. The resultant frictional forces act vertically when the

- wedge angle assumes the minimum*value of f#, whereas they require resolution to obtain the
vertical component of the frictional force for any value of the wedge angle which is greater
thau the minimup. In addition, the moment arm for the small wedge is less than that for the
large wedge. These combined characteristics more than counteract for the greater extent of the
failure zone in the determination for the larger values of Nc and Ng. The parabolic form of the
_equation for N), is probably due to the cubic exponential function of the term ag, resulting
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from the momert product of arca and distance, T is puiely imeidestai that this tom offsets
the infiuence of the wedge angle on the Tengih of thie moment am and on the direction of the

resultant forces.

In view of the <o facts, the adoption of the comect vaiues for the base angle of the
wedge fomis an essential part of the beating capacity caleculation and must be determined from
the boundary stress conditions. Consequentiy, the determinatinn of the bearing capacity by
minimising with respect o the wedge angle <% s of doubtful validitv. It is also interesting to
note that Terzaghi adopts a wedge angle whicl contravenes the stress boundary conditions
to yield a high value for the Ne and Ny factors and yet went to tremendous lengths of minimis-

ing the N~ factor.
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6.1
tions both lymg on the surface and buried up to depths of not greater than ten times their
width. This is an inprovement on previous theories in the following ways:-

6.2

6.3.

values.

6.4
shapes
through

6. CONCLUSIONS

A general theory of penetration failure has been developed for strip footings or founda-

(a) The stress field has fewer inconsistencies.

(b) Only ore set of simple assumptions are consistently employed to describe the
distribution of stresses along a failure boundary.

(c) New, ad quite different conclusions are made on the effect of roughness of
the base. It is shown that rough and smcoth foundations must have exactly the same
penetration resistance under ideal conditions. -

(d)  The theory treats ail the weight of the soil within the figure of rupture as a
complete entity and not partly as a surcharge.

(e) The theay goes some way towards ‘a more realistic combination of cohesion and ,

weight, utilising one figure of rupture.

(f) The dimersionless factors are functions not only of # and the ¢/7YB and
penetration ratios, but also of the shaft parameters ‘

(g) The computed results may be applied more easily to practical problems
The theory still lns certain differences’-

(a) Consideratiem of the effects of dilation had to be sacrificed for the sake of
simplicity and geierality over a wide range of parameters.

(b) Computatiors of the dimensionless factors proved 1mposs1ble at the higher

penetration ratios with low values of f§ because of the excessive tendency for the
failure boundary b close into the shaft without achieving equilibrium.

The experimental penetration resistance data support the quantitative theoretical
The measured failure patterns are shown to be in agreement with the predicted

only when the effect changing soil properties and constraints are carefully evaiuated
out the duration of the test.
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7. RECOMMENDATIONS

The new theory of penetration failure is given in a form which is amenable to further
extension in the development of a theory of slip-sinkage.
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APPENDIX A - THEORETICAL ANALYSIS

The complete theuretical analysis for the determination of bearing capacity is described.
The failure geometry is derived by considering the equilibrium of the plane shear zone and the
boundary conditions. The magritude and directions of all the forces and the moment arms are de-
termined. By taking moments about the pele of the spiral, the bearing capacity is evaluated.

Al THE WEIGHT AND WEIGHT-FRICTIONAL FORCES
IN THE PLANE SHEAR ZONE

The plane shear zone, BDE‘, is bounded by the foundation shaft, BG, the horizontal
soil surface, GE, and the two failure planes, BD and DE, along which the shear stresses are
fully mobilised (Fig. A.1.1.), Using co-ordinate geometry, the weight of the zone, BDEG, is
given by the equation:

W, =31 ip(z2 -~ 2) + pa(2- 22a) ] ...... A 1.1,

When the failure boundary breaks into the horizontal free surface, the following relationships
apply :

z, =0 A.l. 2a.

22 = Z-r8in < A.1.2b.

Za = 2 A.l1.2c.

p}:l‘x cos 4 + z sin (:« -7) A1 2d.
cos (v-17)

Pz = I'y cos ¢ A. 1 2e.

Substituting for the co-ordinates in equation A.1.1,:

Yy A
where
A, = z° sin (- 75) + 2zr, cos ¢ - r¥ sin ~ Cos & Al 4,

The weight-frictional forces on the two failure planes are a function of the depth from the
nearest horizontal free surface:

Zz Zc
Fy, = [ vk Z5 zZ dze
"z v (F) T )
Integrating:
¥y K A%
[+ L3
F,, = x - A.15

z6

2(n+1) B cos (& - )
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where:

e(r+ 1 a4+l
vooa e
Stmilarly :
Zs -
_ p e E\ &c ZQ
Fre =0, Yhy B iz 9%
2
and after integration:
r ) Y ka Ve
Ya 2(n+1) B*sin ¢
where:
z(nn z(nn)
Ve = 25 ) - 22

The weight-frictional side thrust is:

Yk, )
F = = 2z, dzg
Ya 5 J
cos £ 2,
and after integration:
Yy k Al
F. = AL
! 2 cos %
A.2, THE MOMENT ARMS FOR THE WEIGHT AND WEIGHT-FRICTIONAL

FORCES IN THE PLANE SHEAR ZONE

The moment arm for the fcrce due to the weight of the 8oil in the plane shear zone may
be obtained by co-ordinate geometry:

d, = cos (9-) [pf (zz-2y) + papa (2a-2,) + p3 (za - 21) ]

and substituting for the co-ordinates from equation A. 1.2,

d, = ——t——— A.2.1.
3A; cos(s- Q)

where:

Az = z2°sin® (+-C) + 32'rysin(v-7) + 3zricos” u

-1} cos ¥ 8in £ [cos ~cos (¥-<)+co8 ] A.2.2.

/
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The moment arms, d; and ds, for the weight-frictional forces, F., and F, , may be
found by integration;:

zz 25 N
( " vk, _zf z: dz;
%2 % cos®lv <) <B>
do = - cos ©
cos (~-7) 22 "
L SRS SRS
"z, cos(¥-{) B d
: ‘| 4, 20D ¥y \ cos A.2.3.
l (2n+3) V. l cos(¢-7)
where V. is given by equation A.1.6. and: .
V, = 2,(2200) g (2002) A.2.4,
Similarly:
do= |z - 2D Ve | cos - A.2.5.
l (2n+3) V, J sin ¢
where V. is given by equation A.1.8, and:
Ve = z,(2200) g, (2+3) A.2.6.
Finally, the moment arm for the side thrust may be found by hydrostatics :_
d: = zcost A2 T,
3
A 3. THE COHESIVE, COHESIVE-FRICTIONAL AND ADHESIVE FORCES

IN THE PLANE SHEAR ZONE

The cohesive forces are proportional to the relative lengths of the failure
boundaries :

C, = ¢DE = c{z-r, gin 7) ’ A.3.1.
cos (v-7)
Ca =¢ -';I.) = CI; A.3.2.

The cohesive-frictional force, F.,, is given by the equation:
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= Toc V;
A.3.3.
(n+1) B* cos (:-17)
where:
v, =z () gy (501) A.3.4.
Similarly:
c k..
Foo= — 3¢ Ve A.3.5.
(n+1) B®* sin ¢
where: !
Vo = za(E01) g (e01) A.3.6.

The cohesive-frictional side force depends on the cohesive component of the coefficient
of earth pressure:

Foo = SKe 2 A.3.7.
cos <

The adhesive force on the shaft is:

Ci =c,2 A.3.8.

A.4. THE MOMENT ARMS FOR THE COHESIVE AND COHESIVE-
FRICTIONAL FORCES IN THEE PLANE SHEAR ZONE

The moment arm, d,, of the cohesive force, C,, is:
d, =1y CO8 & A.4.1,

The moment arms of the cohesive force, Ca, and of the adhesive force, C,, are zero as
the lines of action pass through the corner of the footing.

The moment arms for the cohesive-frictional forces are found in a similar manner co

their weight-frictional counterparts:

. - (neD)
lo. - e vy | cos @ A.4.2.
(+2) V, | cos(s-7)

d =

where V, is given by equation A.3.4, and :
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Vs = z.‘("’z) - Zl(”:) A.4.3.

<

Similarly, the moment arm for F.: is:

da = Iz - (n+1) Vs \ cos A.4.4.
\ (n+2) Ve | sin -

where V: is given by equation A, 3.6. and:

Vi = 7(3(')*2)-23(“‘2) A.4.5.

The side thrust is assumed to be uniformly distributed and thus:

di. = zcos?t A.4.6.
3 '
A5, SPECIAL RELATIONSHIP FOR < = 0O

When { = 0, the failure plane, BD, is horizontal. Thus, 2, = z; and the forces

Fy, and F.» are indeterminate. In this case, the forces are given by the following equations :

. 2oe1)
F = Yk, Nz { A.5. 1.
Y2 :
BZ:
_ z ~* -
Feo = ¢ k, (g, A.5.2
Both forces are uniformly distributed. Hence:
di=de = 3 1y CcOS A.5.3
A6, THE EQUATIONS OF EQUILIBRIUM FOR THE

PLANE SHEAR ZONE
The general equations of equilibrium are presented in section 2.3, By expanding and

rearranging the terms, equations 2.3.4. and 2.3.5. may be derived in a form which is more
amenable for solution. The equatior for horizontal equilibrium is:

F\lcos - F\' sin(¢-2) + Fe c08 2 - Foo8in(¥.-7)

= 1=‘Y cos * + F.,cos 5 + C,cos [ - Cy8in (#-~ )
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Multiply each term by B/YB, Thus :

where:

Equation A.6.1.

where:

When
required:

but when £ = 0:

Thus :

.. [V sin 7 cos

A, =Blrycos” +k, 2z - (z-r; sin J)tan (¢ - {)

7 =« Ve 8in(¥-7) cos (@ - {)

+ 2k 8 B(®*1) TV, sin - cos 7 - Vs sin(¥-Z)cos(x-C)

= (As + 5, A4 2 (n+1) B™ sin ¢ cos (¢-1)

S, =c/YvB

may be written in the form:

kGYR1+kCCR3-RG=O

R, = V,sin’7 cos 7 - Vesin (¢-2)cos (¢~ )

R:=2 8§, plz+1) (V,sin 7 cos 7 - Vysin(9-2)cos (= -7).

= [As +5, A:32(n+1) B® sin¢ cos (¢ - {)

¢ = 0, special forms of equations A.6.1., A,6.6,, A.6.7. and A.6.8.

ko, Ve - 2 (n+1) 1, 2(*"Y) sin vcos ¢ )

+2k S5 B(**3) (v, (n+l) 1, 2" sin v cos %]

=[As + S A )2 (n+l) B* cos @

v, = z{e*?)

Ve = z(ﬂn+3)

R, = 2(#*1) 2.2 (n+1) r, sin ¢ cos © )
Rz:=25, Ble+1) z¢ [z-{n+l) r,sin% cos « ]

R, = [Aa +S;AJ2(n+1) B® cos @
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The equation for the vertical aquilibrivm of the plane shear zone may be similarly re-

arranged:

F_ cos(¢-7) - FY sin + F.ocos(»-7)-F_; sin ¢
< 1

=W,+ F_ sin> +F. sin ¢+ C, cos (v -)-Casin’ +C,

L]
Multiply each term by B/vB:
kc\.’ Ve COSP'(-;_“-:) -V: Siﬂz-: :
+2 k;_C S, B(ul) [ Vacos™(x -2)-V, sin? ¢ 3
={As + 8, Ac+S2 A5 22(n+1) B°* sin 7 cos (- 7)

where :

A, Y,
2 cos(w~2) 2

A.=Blz(1+ Kk, tan %) -2r, gin [ ]
A- =Bz

S:=¢,/YB

Expressing equation A.6.9. in the form:

the equations for the constants are:

Re = [Vgeco8® (¢ -2) - Vg sin® ¢ .

R: =28, B&* 1) [V, cos® (9 - 2) - V, sin® 7]
Re = [As +8; Ag + Sz A, 12(n+1) B™ sin Icos (¢ - ¢)
When { = 0, a special form of equation A.6.9. is again required:
kcm r, z(®*!) cos s + kwc s, B 1) r,; 2°cos
= [Ag +S,Ac+8:2A,1B%

For this special case, the equations for the constants are:
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R, = r, 202°1) cos 4 A.6.15a,

Rs = §, B(=*1) r, 2° cos & A.6.16a.
Re = _A.+ 8, Ac+ Sz A-1 B¥ A.6.17a,
AT . THE SOLUTION FOR k.., nAND ¢ IN A FRICTIONAL

MATERIAL WITH WEIGHT

In a non-cohesive soil, the values of k. and n may be obtained in terms of ¢ from the
equations of horizontal and vertical equilibrium. Selecting the relevant terms due to weight in
equations A.6.1. and A.6.9. respectively:

°en : r - r
k_,_\ 2 Az (n+l) B*" sin 7 (9 - 1) AT,
e V. sin 7 cos 7 - Vaesin(¥-)cos (v~ 1)
and:
X oo
k.;:v _ 2 A (n+IZB sin ¢ cos (¥ -7) ALT.2.

Vecos® (8-7)- Ve gin®r

Combining equations A,7.1. and A.7.2., and expanding the terms V: and V¢ according to
equations A.1.6. and A.1.8, :

z\,.‘z(r"l) AG = z;z(:'l) (A:-rA;) A.17.3.

where :
As = ¢08 (v-2) LAncos(-7)+ Acsin(v-2)] A 7.4,
Ag=sin? [A; * { + Accos [ : A.7.5,

Thus :
= log (Ag+ Ad) - log A, A.T.6.

2(log 2o - log z2)

Similarly the expressions for k:v and n may be determined from equations A, 6. 1la. and

A.6.9. when 7 = 0:
2 As (n+l) B* cos @

K - A, 7. 1a.
oy Ve-2{(n+l) r, 2(+1) sin © cos @
and:
2 A. (d+1) B cos
k. = - : A.7.2a.
@y 2 (n+l) ry 2(™1) cog? @
Thus : ‘ z A.
ns ——— -1 A .7.6a,
2, A,
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The values of n and K:.+, may be determined for any value of 7 and the input parameters.
The value of - satisfyving all three equations may be found by substitution in the equation of rota-
tional equilibrium (equation 2,3.5.).

A, 8. PHE SOLUTION FOR k., n AND ° IN A FRICTIONAL-COHESIVE
MATERIAL WITHOUT WEIGHT

In a frictional-cohesive material without weight, the foundation shaft is assumed to be

unsupported. Using the same analytical inethod as in section A.7., equations A.6.1. and A.6.9.,
respectively, may be presented in the form:

Ir,cos ” -(z-r,sin”) tan (v - 7)i(n+l) B" sin ~ cos (+ - )

k\_’_,L =
V.sin 7 cos £ - V 8in (¥ - {) cos (& - {) A.8,1,
and
K fz-2r,sin7) (n+l) B® sin < cos (¢-{)
$C =
v, cos” (@-7) -V, sin® 7 A.8.2.
Thus:

n=log Tz, sinl + r, cos® (- 7))-log[r,cos" (¢-1%).

log z5 - log z= A.8.3.

It may be shown that rotational equilibrium is achieved only when the two failure boundaries,
BD and DE, are of equal length which gives the relationship:

z =r,8in7+r,cos(¥-7)
Using this equilibrium condition in equation A.8.1. and A.8.3., k__‘C =1 and n= 0 for any

value of - .

A.9. THE SOLUTION FOR kg, nAND 7 IN A FRICTIONAL-COHESIVE
MATERIAL WITH WEIGHT

When both weight and cohesion are present, the coefficient k. may be determined from
the quadratic equation A.6.9. intermsof n and 7 :

1
koo ” - R oz (R + 4R, Ro)* A.9.1.

2R,

One root, derived by subtracting the discriminator, is valid when 7 < 0 and the other root is
valid when 7~ = 0.

Thé values of n and © may be found by substitution in the equations for the horizontal
and rotational equilibrium of the plane shear zone,.
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A 10, THE FORCES IN THE RADIAL SHEAR ZQONE

The area of the spiral sector, BCD, is determined first:

Thus, the weight of the zone is:

A 10.:

In order to calculate the moment of cohesion about the pole of the spiral, consider a

small element of length ¢1 (Fig. A.10.1.), Taking moments about B:

dM, = cdlr cos <

But:
dl = r dw
cos @
dM. = cr’ du
Integrating :
't
M., = r er?ds
Yo
= ¢ (ry” -r.°)

A 11, THE MOMENT ARM FOR THE WEIGHT FORCE IN THE RADIAL
SHEAR ZONE

A.10.3.

A, 10.1a.

A.10.3a.

The determination of the moment arm, ds , for the weight force, W, of the spiral sector,
BCD, is not possible directly. The moment of area for the spiral sector with reapect to the pale
of the spiral is determined instead (Fig. A.11.1.). In the limit, as « = 0, the area of the spiral
sector approximates to that of a triangle and the centroid is then approximately that of a triangle.
Taking one axts, ©, along r, and the other axis, ¢, normal to it and passing through the pole of

the spiral, the cartesian co-ordinates of the centroid are (v,, {,) where:
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i
ng, = f 2/3 rcoswds

Q
and:
Ly = fo 2/3 r cos dw

Yo

The moment of area, 3, (,, is given by.the equation:

2
" s
o @ 2/ © .
M.=,: rods. ™3 ; rsinvda
1 a o Ji:tan o
=4/3r . e sin o duw .
vq 3

Integrating by parts, the final expression is in the form:

st

M. =vir®@sins - cosua)+r’] A.11.1,
where ; 4
u=3tan A.11.2
v = '___l i A.11.3.
3 (1+u®)

The moment of area, .. n,., mMay be derived in a similac way:

M = 1/3 r3f eB-vtan;-‘-

< €OS 1 Gy

“a

After integration:
. M =V (r. (sin s+ u cosw)-ur > 2 - A.11.4,

Transforming the =, 7 axes at the pole of the spiral tc x, ¥y axes, the following rela-
tionships are derived (Fig. A.11,2.):

X, €08 . = - (r +y,sins) A.11.5.
Xeo 8in v = I + y. cesv A.11.6.

The moments of area, 5, x,, about the pole of the spiral can be written in the form:

(e 3

do Xo = 4 Xo(cos” L sin” 7))

(]
= 3. ¢08 (X, €08 . )+ 4.8inv (X 8in /)
Substituting for x, cos : and x,sin ¥ from equations A.11.5. and A.1).6., the following

expression for the moment of area is obtained :

X, = M, sin: - M_cos . A 117,
> - “ -

t2




de=x, = M, sin¥ - Mn cos ¥ A 11,8

)

The momeant arm, d., is derived in this general form to be applicable to bearing capacity
analyses in which the pole of the spiral is not necessarily located at the corner of the fouting.

A.12. THE MOMENT ARMS FOR THE RESULTANT FORCES

It is assumed that the resultant weight-frictional component of pressure is distributed
hydrostatically. Considering an inclined plane surface of unit width immersed in a homogeneous
material, the centre o{ pressure may be determined by hydrostatics {Fig. A.12.1.).

L =k°d

where K is the radius of gyration and is given by the equation: .

k? = 1% 4+ o

12
But, it can be shown that:
d - 2z, + 2z
2 sin {
and
1= 2z, - 2y
sin -~

Combining these relationships, the distance, L, of the centre of pressure from the surface along
an inclined plane is:

L = 2(2°+ 2.5+ 2z, 2¢) A12.1,

3 (z,+2z) sin ¢

The moment arm for the resultant weight-frictionél force on the wedge boundary may ke
found by substituting the values:

Z, =2
z.=z+ % Btan,

in equation A.12.1. This yields the equation:

de = B(3z cos vy +B sin ) cos @ A 12.2,

3(4z cos y +Bsin <) cos ¥

As the resultant cohesive-frictional force is assumed to act at the midpoint of the wedge
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boundary, the moment is:

d,, = B cos o A.12.3.

4 cos (45+</2)

A. 13, ' THE DETERMINATION OF THE RESULTANT BEARING
CAPACITY

The complete svstem of forces and moment arms is shown in Fig. A.13.1. By taking
moments about the pole of the spiral, the resultant forces, Fy and F., are determined for the
general case when a side thrust is applied to the wall of the excavation:

F = Wy dy + Wdz - Fy, & +Fy, & A.13.1,
do

F. = C, dr - Fo, ds + Fo, dic + M, A.13.2.
duy

The total force on the base of the footing due to the weight of the soil mass at failure is
obtained from the vertical component of the force, F,, on both boundaries of the wedge, less the
weight of the soil wedge; the total force due to cohesion is obtained from the vertical components
of the forces F, and C; acting on the wedge boundaries (Fig. A.13.2.):

Flb/in = 2F cos (i -3) - vBitan v + 2F. cos (¥ - @) + 2 Cs sin ;
4

This express.un for the base resistance may be written in the form of a two part additive equat.ion:

F lb/in = $vB®Ny + cBN, A.13.3.
where:
N, = 4F, cos{-%) _ tan: A.13. 4,
vB* '
N, = 2[F,cos(v - )+ C, 8in v _ A.13.5,
cB

The dimensionless bearing capacity factors, Ny and N,, are a functionof @, &, ¢/vyB, z/B,
ky, and K, .
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FIG. 1.2.. MOHR CIRCLE ILLUSTRATING THE
TWO PLANES OF INCIPIENT FAILURE.
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FIG.1.2.2. THE GENERAL FORM OF A CURVED
SLIP LINE FIELD WITH ONE SINGULAR POINT.

FIG.1.2.3. THE DEVELOPMENT OF THE EQUATION
FOR THE CURVED SLIP LINES IN A RADIAL FAN.




FIG.1.2.4. TYPICAL SLIP LINE FIELDS DETERMINED BY SOKOLOVSKI.

(a) THE_ASYMMETRICAL FAILURE FOR A SURFACE FOUNDATION,
(b) FAILURE FOR A BROKEN BACK RETAINING WALL.

FIG.1.2.5. THE INCOMPLETE SLIP LINE FIELD FOR SYMMETRICAL
SCiL FAILURE. BENEATH A BURIED FOUNDATION,
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FIG.i.31 SOLUTIONS FOR THE STRESS FIELDS IN AN
IDEALLY PLASTIC METAL DEFORMED BY A FLAT PUNCH.

FIG. 13.2. JAKY'S SOLUTION OF THE STRESS FIELD
FOR THE MAXIMUM BASE RESISTANCE OF A
DEEP PILE IN AN IDEALLY PLASTIC CLAY.
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(b) SHALLOW

FIG, l.4.1. FOUNDATION FAILURE AFTER TERZAGHI, FOR
COHESION AND SURCHARGE (LHS), AND WEIGHT (RHS)
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FIG.1.4.2. FAILURE PATTERNS UNDER A SHALLOW FOUNDATION
FOR ¢=O AND ®:=30° (AFTER LUNDGREN AND MORTENSEN)
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FIG 1.4.3. CORRECTION FACTOR FOR THE BEARING CAPACITY
OF A SHALLOW FOUNDATION
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FIG. 1144. THE FAILURE PATTERN BY THE THEORIES OF

PLASTICITY AND ELASTICITY (AFTER GORBUNOV —
POSSADOV)

BC'- BOUNDARY OF THE ELASTIC PART OF THE
COMPACTED CORE.

B C — BOUNDARY OF COMPLETE CORE.

® =30°
Q<Y < 45+ @/2

FIG.1.45. THE FAILURE PATTERN BY THE VARIABLE
FACTORS THEORY (AFTER HU)

% max

FIG.1.4.6. THE FAILURE PATTERN BY THE STRESS —
DILATANCY THEORY (AFTER ROWE)
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(b) DEEP
FIG.L.5.. FOUNDATION FAILURE AFTER MEYERHOF, FOR
COHESION, SURCHARGE _AND SKIN _FRICTION (LHS),
AND WEIGHT (RHS).
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FIG.1.5.2. FAILURE BENEATH A BURIED FOUNDATION
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FIG.2.I.1. THE ORIENTATION OF SLIP PLANES AT THE
STRUCTURE FOR KNOWN INTERFACE FRICTION.

FIG.212 THE STRESS FIELD FOR A WEDGE-SHAPED
FOUNDATION AFTER MINTSKOVSKY.
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FIG.2.1.3. THE ORIENTATION OF THE SLIP PLANES AT THE

STRUCTURE FOR KNOWN INTERFACE FRICTION AND
ADHESION.
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FIG. 2.2.1. THE SOIL FLOW PATH BENEATH A
PERFECTLY SMOOQOTH FOOTING MODIFIED BY
POSSIBLE CONFIGURATION OF THE FIXED SCIL BODY.

FIG. 2.2 2 THE COMPLETE STRESS

FIELD FOR A SURFACE FOUNDATION.
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FIG 2.23. THE COMPLETE STRESS FIELD
FOR A DEEP FOUNDATION WHEN PASSIVE

PRESSURE ACTS ALONG WALL BG.
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FIG.2.25.THE FAILURE PATTERN AND VARIATION IN SKIN RESISTANCE
FOR A DEEP FOUNDATION IN DENSE SAND (AFTER VESlt)c/YB
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FIG 4.4.3  The formation of the wedge beneativ ¢ v in. wide smooth
footina driven into dry sand.
(a; The maximui size duwring the 1nitic) wousiivation process

(b} The coimplete developrent of the <:ubic wedge.
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FIG.44.5S. THE PARTIAL DESTRUCTION OF THE WEDGE
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FIG 4.5.1

The shape of the wedge beneath a 2 in. wide smooth

footing buried in damp sand
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FIG.A.1.1. THE DETERMINATION OF THE WEIGHT OF
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